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Abstract

In this paper I show that consumers in food stores and supermarkets/hypermarkets

became significantly less price sensitive between 2006 and 2017. At the median, across

thousands of stores and products in nine large categories, estimated own-price elasticities

have declined by 25% over this period. I argue that these changes are likely due in part to

improved supply chain management, which has led stores to offer a larger variety of goods

which better match consumers’ individual preferences. I show that newer products are

indeed more “niche” in this sense, and that other potential sources of rising differentiation

including increases in quality and changes in consumer wealth play a smaller role. Markups

implied by a monopolistic pricing rule suggest that the observed rise in differentiation was

large enough to generate significant increases in firms’ markups absent any changes in

pricing behavior or competition.
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1 Introduction

Retail supply chains have become substantially more advanced over recent decades. As

large firms have invested in information technology (Shin and Eksioglu, 2014; Soliman et al.,

2005) and have developed more agile vertically integrated distribution networks (Kuhn and

Sternbeck, 2013), they have been able to more efficiently keep track of and move inventory

between wholesalers, distribution centers, and stores. As a result, stores are now able to sell a

much wider variety of products than in the past (Fernie, Sparks and McKinnon, 2010; Hortaçsu

and Syverson, 2015; Consumer Reports, 2014). These trends have provided retail consumers

with far more choices, thereby increasing the likelihood that a given consumer will find a product

which closely fits their preferences (Baumol and Ide, 1956). Recent work by Neiman and Vavra

(2019) detailing the rising concentration of household purchases over time is quite consistent

with this intuition.

In this paper I discuss the ramifications of these facts from an industrial organization per-

spective, in order to understand the ways in which product selection, prices, and markups in

retail food stores may have changed as a result of advances in supply chain management. Tradi-

tional discrete choice models of demand highlight the potential benefits of differentiated goods

to multi-product firms such as retail food stores. In some models of demand, a large portfolio

of goods can crowd the characteristic space, meaning consumers will be increasingly willing to

substitute between goods as the size of their choice set grows. Offering highly differentiated

goods is one way the firm can limit such substitution and maintain large markups even as they

offer a growing portfolio of goods. In particular, as I demonstrate in a simple discrete choice

model in Section 2, as the number of products sold in a store increases, firms have an incentive

to offer products for which consumers have increasingly heterogeneous preferences, which I call

“niche” products. Given a large enough menu of products offered, niche products offer the

monopolist the opportunity to better match each consumer’s tastes, thereby permitting the

firm to better price discriminate and charge higher prices. The rise of agile, flexible, supply

chains seems to offer a natural opportunity for firms to have made progress on these dimensions.

Supply chains have become more demand focused (e.g. the “quick response” regime), meaning

firms receive regular information about the real-time demand for each product. This provides

the opportunity to better select the assortment of products offered in order to maximize prof-

its. Accordingly, the hypothesis of this paper is that, as firms have changed the assortment

of products stocked, products have become more differentiated in the eyes of consumers, and

markups have risen as a result.
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With this hypothesis in mind, the focus of the empirical work herein is in estimating

consumer demand for many products in 2006 and 2017 across thousands of retail stores in the

United States. With these estimates I provide partial answers to three questions: (1) how

has differentiation between products within stores changed over time? (2) what evidence is

there that firms have increased markups in response to these changes? (3) what role have

niche products played in these changes? The first question is interesting in its own right,

as significant changes in substitution patterns over this time horizon could point to changes

in economic primitives of interest (e.g. the shadow value of wealth). The second addresses

the extent to which firms have taken advantage of these changes by charging higher markups.

The third provides a potential structural explanation for rising differentiation. Addressing the

second and third questions requires placing some additional structure on consumer demand

and/or firms’ pricing behavior, but allows us to relate the rise of variety directly to a growing

literature on rising markups and profits.

Answering these questions convincingly relies on credible estimates of demand for many

products at a granular level. This requires product-level data for a reasonably long panel of

firms. Most recent discussions of markups rely on firm- or establishment-level data to estimate

markups via the “production approach,” which requires strong assumptions even in settings

with data on quantities sold by single-product firms (Flynn, Gandhi and Traina, 2019; Brand,

2019; Jaumandreu, 2018). In the much more common setting in which the researcher only

observes revenue, instead of quantities and prices separately, recent work by Bond et al. (2020)

indicate that little if anything can be learned about markups from these methods. This is one

way in which the data herein are ideal, as they cover a large number of products and firms

and contain product-level prices and sales data which can be used to calculate product-level

markups for each firm.

The second issue is that an empirical model of demand for thousands of products which

span many categories should be as flexible and general as possible while remaining tractable and

computationally feasible. In order to ensure that my results are robust to a variety of assump-

tions on consumer preferences, I estimate demand for nine product categories in three ways in

Section 5 (and twice more in Section 8). In the first, I follow the canonical approach in the

spirit of Berry, Levinsohn and Pakes (1995) (BLP), which estimates structural utility param-

eters in a discrete choice framework. This model permits significant unobserved heterogeneity

differentiating products and stores, but assumes that the distribution of consumer preferences

(e.g. over horizontal product characteristics) is the same at every store.1 In a second approach,

1My inclusion of store-product fixed effects does permit the mean preferences for goods to vary across stores.
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I estimate separate structural demand parameters for every three-digit ZIP code, for every

category in every year, using an approximation to a structural model as developed by Salanié

and Wolak (2019). This results in hundreds of estimated structural preference parameters each

year for every product category in my sample. In a third, I focus instead on estimating more

than 100,000 constant elasticity demand curves at the store-category level in an approach very

similar to that taken by DellaVigna and Gentzkow (2019) in their study of uniform pricing.

My results indicate that consumers are substantially less willing to substitute between

products in 2017 than in 2006. My estimates from a BLP-style model imply that own-price

elasticities have declined from -2.17 to -1.65 at the median across all products in my sample.

I find a similar pattern with respect to cross-price elasticities and within category in all but

one of the nine studied categories. Using estimates of preferences which vary at the three-digit

ZIP code level, I show that these declines appear to be in part the direct result of changes in

consumer utility functions, specifically in the effective disutility of price. Next I demonstrate

that under a monopoly pricing rule the observed substitution patterns and prices are consistent

with an increase in markups in most modules, both at the median and along much of the

interquartile range. Finally, I provide evidence for two predictions of the simple model in

Section 2 regarding the role of niche products in explaining these trends. First, I re-calculate

own-price elasticities under a counterfactual scenario in which preference heterogeneity in 2017

is reduced to its 2006 levels. I find that this eliminates much of the observed changes in price

elasticities. Second I show that, in all but one of the modules I study, newer products tend to be

more niche than older products. Altogether these results provide evidence for the importance

of rising differentiation and the introduction of more niche products in changing substitution

patterns and markups.

This paper is closely related to the recent literature suggesting that the variable prof-

its of the largest firms in the United States have been rising since the 1980s (Barkai, 2020;

De Loecker, Eeckhout and Unger, 2020). Existing explanations for the underlying causes have

been varied, ranging from rising concentration (Autor et al., 2020), to increasing monopsony

power (Stansbury and Summers, 2020). In general, the dominant mechanisms will likely vary

by industry. For example, as outlined by Ganapati (2021), concentration in a number of sec-

tors has increased in recent decades. However, prices have declined and output has increased in

these sectors over the same period, both of which are counter to standard concerns about rising

market power. Similarly, although Hsieh and Rossi-Hansberg (2019) make a convincing case

Still, the distribution of preferences for price and the random utility shocks are assumed not to differ across
stores.
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that the cost reductions brought on by investment in IT played a major role in these changes

in the service industry, Grieco, Murry and Yurukoglu (2020) find that costs have risen in the

U.S. automobile industry as a result of cars growing larger, heavier, and more durable. My

findings offer another example of the ways in which investment in IT may have caused markups

to increase, and offer a mechanism through which this may have occurred.

The closest existing paper to mine is Neiman and Vavra (2019), who document the fact

that household purchases have become more concentrated at the same time that store-level sales

have become less concentrated.2 As in this paper, they attribute these facts to firms offering

more products, which allows consumers to find goods which are closely tailored to their tastes.

Their model aggregates nicely and permits a discussion which covers many more products than

are considered herein. However, this comes at the cost of doing the analysis at the product

category level rather than at the store or product level, which aggregates over a substantial

amount of variation, and abstracts from some of the heterogeneity and changes in substitution

patterns which can be incorporated in studies of fewer products like the present paper. This

paper compliments theirs - by focusing on a smaller number of products (and paying a much

higher computational cost) I am able to describe the full distribution of price elasticities at

thousands of stores and discuss in more detail the ways in which consumer preferences have

changed over time.

2 Simple Model of Optimal Differentiation

To set the stage for the remainder of the paper, in this section I discuss the likely effects

of a firm developing a supply chain which is increasingly demand driven and which requires

significantly less inventory to be stored, as has been the case for many firms in recent decades.

I model these features of the supply chain as an opportunity for firms to (i) keep track of and

better respond to key features of demand and (ii) sell more products/varieties in total, and

provide intuition which indicates that these new and improved supply chains may have made

stores more likely to sell products which are increasingly differentiated and niche, in a sense I

define below.

2Kiedaisch, Chai and Rohde (2018) also study changing consumption patterns and variety, and argue for
the importance of including consumer-level preference heterogeneity in studies of the benefits of variety.
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2.1 Monopolist’s Problem

Consider a monopolist choosing a menu of products to offer from some large set. The firm

knows that, after choosing which portfolio of products to stock, it will set prices in order to

maximize short-run profits. The less willing consumers are to substitute between products or

to purchasing nothing, the more surplus the monopolist can extract from consumers in the form

of high prices. Knowing this, the firm would like to stock products which are “differentiated”

in exactly this sense. This point is related to a now significant literature studying firms’

endogenous choices of products, and product characteristics, to offer to consumers (Waldfogel,

2003; Draganska, Mazzeo and Seim, 2009; Fan, 2013; Sullivan, 2017).

We can see this intuition somewhat more precisely in, for example, a short run profit max-

imizing monopolist’s first order condition in the form of price derivatives of demand. Toward

this end, in Equations 1 and 2 I present first order conditions for single and multi-product

monopolists, respectively. In each equation, p∗ represents the (vector) of optimal prices, mc

denotes marginal costs, and s(p∗) is the realized demand in the form of market shares.

p∗ −mc = −
( ds
dp∗

)−1

s(p∗) (single product)(1)

p∗ −mc = −J−1
p (p∗)s(p∗) (multi-product)(2)

The term Jp(p
∗) denotes a matrix of derivatives of demand with each (i, j) element equal to

∂si(p
∗)

∂pj
, making J−1

p (p∗) analogous to ( ds
dp∗

)−1 in Equation 1. According to these first order

conditions, monopolists will be able to charge higher prices (and earn larger margins) by offer-

ing products for which consumers are less price sensitive, as measured by price derivatives of

demand.3

Following this logic, the more differentiated are products, the more the monopolist can

(i) set high prices on many goods without losing customers and (ii) price discriminate across

consumers, ensuring that each consumer purchases a product with a large margin for the mo-

nopolist.4 The firm can achieve its goals by offering goods differing on either vertical (e.g.

quality) or horizontal (e.g. niche product characteristics) dimensions but the end result is the

same. This brings us to the first prediction of the paper. Given the growing emphasis of retail

3Of course, the derivatives of demand which appear in these equations are functions, so defining “less price
sensitive” precisely would require some additional notation.

4Note that the off-diagonal elements of J−1
p are important largely because, to the extent that marginal

costs differ across products, minimal cross-product substitution means that the monopolist can charge higher
markups on goods with lower marginal costs.
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supply chains on quick responses to real-time consumer demand, the increased efficiency of

these supply chains, and the resulting rise in the number of products on store shelves, it seems

natural to suspect that firms have had an increasing number of opportunities, and an increas-

ing technological ability, to change the assortment of products they offer in order to increase

differentiation and thereby increase markups.

2.2 Differentiation as Stocking Costs Decline

An important effect of improved supply chain efficiency is that firms are not required to

keep large inventories of products within a store (Sparks, 2010). Instead, products are often

kept at chain-owned distribution centers and delivered to stores in smaller frequent trips as

inventories run low. This means that the effective costs of stocking additional products in a

store have declined, as the firm need not have significant inventory space within the store in

order to offer a new good. Naturally, this changes the nature of a monopolist’s problem, in that

it can now offer a wider selection of products. This raises the question: how will the attributes

of newer products (those added due to reduced stocking costs) differ from those offered before

these technological improvements?

Both horizontal and vertical differentiation may be beneficial to the firm, as both imply

that consumers will be willing to pay at higher prices. In a sense, firms always wish to offer

high quality goods. A sufficiently high quality good can induce all consumers to purchase at

some price (which naturally depends on the strength of preferences for quality). Normally, how-

ever, we think of vertical differentiation as being costly. In empirical studies of manufacturing

productivity, for instance, higher quality goods are assumed to require higher quality inputs

(De Loecker et al., 2016). This may constrain the extent to which firms can increase vertical

differentiation even as stocking costs decline, because wholesale costs for high quality goods

will remain high.

To the contrary, introducing a new horizontal attribute like flavor, or changing product

branding, may entail a much smaller cost. An important question then, is how the optimal

level of horizontal differentiation differs with the number of products offered, and in particular

how the characteristics of the marginal good differs as the firm’s portfolio size grows. To study

this question, consider a setting in which the utility a consumer i receives from purchasing a

good j at price pj is represented by

uij = −pj + εij
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For simplicity, let εij be independent across goods for each consumer.5 A consumer chooses to

purchase one of J inside options or one outside option with ui0 = 0 by choosing the option

which maximizes her utility. In this form, εij is each consumer’s willingness to pay for product

j. Now suppose a monopolist can only afford to stock a single product (e.g. because doing so

requires maintaining a large in-store inventory). In choosing the type of product it will sell, the

monopolist must choose among two options:

Staple : εij = 1.5 for all i

Niche : εij = 1 or 2, each with probability 0.5

In words, all consumers will pay 1.5 for any Staple good, while for Niche goods half of all

consumers will pay 2 while half will only pay 1. For each consumer, εij is independent across

goods, meaning a consumer’s willingness to pay for one Niche good does not predict their

preferences for another.6

I call these “types” of products to emphasize that there are many goods of each type to

choose from. Staple goods are meant to represent goods which many consumers are willing to

purchase but for which no consumers are perfectly matched. Think of goods like Coca-Cola and

Pepsi, which are ubiquitous in grocery stores and which are sold to a relatively large fraction

of soda buyers. Niche goods represent goods which are more narrowly tailored to a subset of

consumers’ tastes. Continuing with sodas as an example, this might include things like Orange

Vanilla Coke Zero. For many consumers, any of “Orange,” “Vanilla,” or “Zero” might make the

product undesirable, but for some consumers these descriptors will make the product a better

fit to their tastes. These consumers will be willing to pay more for the Niche good, and thus will

be less likely to substitute to other products when the price of the Niche good increases (e.g.

above the Staple good price). In this example, the firm will choose to offer a Staple product,

as it can set a price of 1.5 and sell to all consumers, whereas a Niche product can only be sold

to all consumers at a price of 1 or half of consumers at a price of 2.

In this model, this decision changes as stocking costs decline (i.e. as the number of products

offered increases). If the monopolist can afford to stock two products instead of one, then it can

either again sell to all consumers at p = 1.5 (by offering Staples), it can sell to 75% of consumers

at a price of 2 (by offering Niche products), or it can offer one of each type of product and sell

5This is much stronger than necessary. As long as εij are not perfectly correlated, adding more niche
products becomes more desirable as J increases.

6The intuition here holds much more generally, as long as εij are not perfectly correlated across goods.
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to 50% of consumers at a price of 2 and the remaining 50% at a price of 1.5. The latter option

maximizes profits, meaning the second product the monopolist stocks will be Niche. In this

example, in fact, all products stocked beyond the first will be Niche. As stocking costs decline,

then, two predictions follow: a growing share of stocked products will be Niche, and average

prices will increase.7

3 Data

3.1 Weekly Scanner Data

The first dataset I use comes from the Nielsen Corporation through an agreement with

the Kilts Center at the University of Chicago. This dataset contains product-level sales and

average price data from 2006 to 2017 for thousands of stores and dozens of retail chains which

span the United States.8 These data are reported weekly and are exhaustive of all products

sold. To make it into my working data set for a given product category, a store must be a

“food store” or “mass merchandiser” and must appear in the Nielsen data selling at least one

good in that category in the first 16 weeks of both 2006 and 2017. Focusing on food stores

and mass merchandisers is natural, as these stores tend to be larger than other (i.e. drug and

convenience) stores in the Nielsen data, and thus better represent the rise in variety being

studied.

As for the second restriction, there have been a number of recent papers discussing changes

in retail concentration and the entry of new, higher-productivity retail stores, which are not the

focus of this paper (Foster, Haltiwanger and Krizan, 2006; Rossi-Hansberg, Sarte and Trachter,

2018; Smith and Dı́az, 2020). By focusing on a balanced panel of stores for each category, we

reduce the likelihood that these mechanisms explain the results herein.9 Among these stores,

I deflate all prices to 2017 dollars using the CPI.10 I restrict all of my analysis to the first 16

weeks of the year, and to the 300 most popular goods (by the total number of purchases in the

7In this example, the monopolist never drops its single Staple good. This is because, for any monopolist with
at least 2 products, offering at least one Staple good ensures that every consumer pays at least their willingness
to pay for the Staple (i.e. all consumers purchase a good). Permitting a small number of consumers to dislike
the Staple good solves this issue at the cost of making the example less clear.

8Use of this data set and the home scanner data below have become very common within economics. For a
more detailed description of these data, see Hitsch, Hortacsu and Lin (2019).

9For example, if a large chain in the scanner data had expanded its geographic presence substantially since
2006 and had also reduced prices substantially, this could reduce estimated price elasticities in the aggregate.

10Note that, because we are most interested in price elasticities, using the wrong inflation measure (or, in
fact, not deflating at all) should not impact our conclusions. Any multiple on all prices is included in the
denominator and numerator of elasticities, meaning it will cancel out. I show this empirically in Appendix C.
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year across all stores in my sample) in each product module each year, largely as a solution

to computational issues.11 In this paper, I specify a product as a unique Universal Product

Code (UPC), which is the finest level at which the Nielsen data differentiates products within

a year.12 I present some summary statistics of this scanner data in the next section.

3.2 Nielsen Homescan Consumer Panel

The second dataset I use is the Nielsen Corporation’s Homescan Panel data, which consists

of a rotating panel of consumers who are asked to scan all of their purchases from retailers.

This data is available to me though an agreement with the Kilts Data Center at the University

of Chicago, and includes tens of thousands of households across the country and millions of

transactions. I use these data for two central purposes. First, because consumers are followed

through many purchases, they provide vital information about the frequency with which con-

sumers choose the outside option (i.e. not purchasing from a given product category). This

allows me to define market sizes (and therefore market shares). Second, I use these data to test

for behavior which might bias my estimates of demand. I describe this test in Section 3.3.

To measure market sizes, for each product category in the panel I calculate the proportion

of consumers who buy a product in that module per week out of the total number of consumers

who buy from the category over the course of the year. I calculate this proportion for each week

and take the average over the year. Then, I use this average value to scale all market shares

(i.e. shares among inside options) calculated using the weekly scanner data (above). These

calculations, while imperfect, are straightforward and intuitive. If 100 consumers purchase

yogurt each year, but only 50 purchase in the average week, then perhaps something close to

50 consumers choose the outside option each week. For each store, for each category, I multiply

this ratio (2 in this example) by the maximum number of units purchased in that store-category

in any week of the year, which defines the market size for that store in that module. Many

classic studies use more ad-hoc definitions of market size, such as population in a nearby region

(e.g. the entire population of the United States, or of a ZIP code). As such, although defining

market size is often a difficult decision in the estimation of structural demand models, this

approach seems quite reasonable. I also present one set of demand estimates which are robust

to misspecification of market sizes.

11I estimate store-level logit demand models for a subset of categories which include all products in the
scanner data in Figure A.1. My results are unchanged by including these additional products.

12Technically, a UPC-version code combination is the finest level at which the data differentiates products,
but this distinction will be of little importance to most of my analysis as I do not generally assume that all
attributes of UPCs remain constant over time.
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3.3 Selecting Product Categories

Products in the Nielsen data are divided into hundreds of categories called “modules”

(moving forward, I use “categories” and “modules” as synonyms). These modules tend to

define large but reasonable sets of substitutes. For example, refrigerated yogurt and fresh eggs

are each a product module. Given the huge number of products included in the Nielsen scanner

data, and the computational costs of some of the structural models estimated herein, studying

all modules is unrealistic. To construct my sample of products to study, I begin with the 41

modules studied by DellaVigna and Gentzkow (2019) which are sold by mass merchandisers

and/or food stores, a set which covers a large and diverse array of products. Even this is too

many modules to include in this study, which raises the question of whether there is a principled

way to select which categories to study among this subset.

The approach I take in this vein is to exclude modules which are likely to yield biased

estimates due to a particular form of dynamic behavior. One issue which has been raised in the

literature on demand estimation, particularly in retail, is that estimating demand in settings

in which consumers tend to keep an inventory of products will often lead to biased estimates

of price elasticities. This is largely due to the fact that, if consumers can keep a large enough

inventory, they can decide to buy many units when a product is on sale and none otherwise.

This type of behavior can generate demand estimates that imply very large short run price

elasticities, even if long run price elasticities are small (Hendel and Nevo, 2006). With this

in mind, only product categories in which consumers do not keep a large stock of products

or target sales should be included in the main sample in this paper.13 In order to exclude

any modules in which consumers exhibit this type of behavior, I conduct a test which draws

on the arguments in Hendel and Nevo (2006): if consumers are unable to store goods, then a

consumer’s purchase amount should not predict the time until their next purchase. For each

module, I estimate a regression motivated by this intuition using the consumer panel data and

test the null hypothesis that the previous purchase amount does not predict the time between

purchases (more details are included in Appendix B). I then keep only the nine modules with

the largest p-values for this test (all greater than 0.5). I list these nine modules in Table 1 as

13Of course, another option would be to introduce a dynamic model of demand instead of excluding some
modules. The computational costs of dynamic demand models are often severe, and would make much of the
analysis herein infeasible.
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well as the number of stores in my sample selling each category.14,15

Table 1: Modules Without Evidence of Storage

Module Description # Stores
FRUIT DRINKS - OTHER CONTAINER 10994
SOUP-CANNED 10911
COOKIES 10995
PIZZA - FROZEN 7528
ICE CREAM - BULK 7393
ENTREES - REFRIGERATED 5613
YOGURT - REFRIGERATED 5742
FRESH FRUIT - REMAINING 4733
LIGHT BEER (LOW CALORIE/ALCOHOL) 4138

Note: Modules chosen following procedure in text. Full table including all considered product modules can be
found in the Appendix.

4 Motivating Empirical Facts

One of the most significant changes in retail over recent decades has been a drastic increase

in the use of information technology to manage supply chains and keep track of inventory. The

growing use of IT in supply chain management has been part of a trend in retail firms toward

demand-driven supply, often following dominant frameworks such as just-in-time/quick response

and efficient consumer response. See Fernie, Sparks and McKinnon (2010), for example, for

a full review of these changes with a focus on the United Kingdom. These approaches tend

to involve vertically integrating and passing data up the supply chain, such that inventories

are restocked at a rate which closely matches actual demand in downstream stores (Fernie

and Azuma, 2004). In the retail fashion industry, for example, these methods have brought

on significant cost reductions and faster production, leading to a quicker turnover in stores’

inventory as consumer tastes change (Bhardwaj and Fairhurst, 2010). In grocery retail stores,

and especially in the largest stores, the rise of IT technologies like RFID has made it easier to

track inventory across levels of the supply chain (Shin and Eksioglu, 2014).

14Though most categories are given intuitive names, two which may require clarification are “Fresh Fruit -
Remaining” and “Fruit Drinks - Other Container.” The former contains the large majority of fruits in grocery
stores, and appears to only exclude a small handful of popular fruits (e.g. apples and oranges). The latter, on
inspection, appears to contain most fruit-flavored drinks, including sports drinks and pure fruit juice blends.

15I also show that my results are not dependent on this particular approach to selecting categories by
calculating some results for additional product categories in Figure A.1.
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According to a Consumer Reports article from 2014 citing numbers from the Food Mar-

keting Institute, the average number of products in a supermarket increased from less than

9,000 in 1975 to almost 47,000 by 2008 (Consumer Reports, 2014). The Nielsen data for the

categories I study, which cover the following decade, are consistent with the continuation of

this trend. In the first week of 2006, the average store sold 385 of the products in my sample.

Stores selling all nine categories sold on average 804 products. In 2017, these numbers were

488 and 930, respectively. These means mask a significant amount of heterogeneity, which I

demonstrate in Figure 1. For each store in my sample I calculate the difference in the number

of products sold (across all nine modules) between 2006 and 2017. In Figure 1(a) I plot the

empirical density of these differences across all stores in my sample, and in Figure 1(b) I do

the same after restricting the sample to stores which sold all nine modules at least once. The

mean is more than 100 new products in each figure, as denoted by the vertical grey lines, but

many stores have increased their product selection in these modules by 200 or more products.

Both figures indicate that, even among this small subset of modules, the number of products

sold in many stores in my sample has increased substantially between 2006 and 2017.16

Figure 1: Number of Additional Products in Sample Modules in 2017
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Note: Constructed from Nielsen scanner data. Figure (a) includes stores all stores in my sample, and Figure
(b) restricts the sample to stores which sold a product in each of the nine sample modules at least once in my
sample. Top and bottom 1% of the distributions have been trimmed.

Next, we should discuss the ways in which the (price and non-price) characteristics of prod-

ucts sold have changed over time. The first piece of evidence in this direction comes from the

United States Department of Agriculture Economic Research Service (USDA ERS). In Figure

16I also show the full distribution of the number of products sold separately by module in Figure A.5.
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2 I reproduce two tables constructed by the ERS which describe a subset of characteristics of

new products as indicated by the Mintel Global New Products Database (GNPD), via “tags”

indicating product characteristics. The Mintel GNPD is a large database of products which

claims to add approximately 40,000 new products each month and covers a significant frac-

tion of products sold in over 80 countries. In Figure 2(a) , we can see that according to this

database the number of new products each year marked as “kosher,” “gluten free,” “organic,”

and “low/no/reduced allergen” has grown dramatically, often by a factor of 2 or more. Figure

2(b), which presents these trends as a fraction of all new products in the GNPD each year,

demonstrates that the number of products with many characteristics (e.g. “GMO free”) have

grown not only in levels but as a proportion of new products.

The Mintel data are meant to cover dozens of countries, meaning they are not necessarily

representative of the stores in my sample. The data Nielsen provides regarding the characteris-

tics of all products sold by retailers in their data are much less detailed, meaning the extent to

which we can match these trends in the Nielsen data is very limited. What can be said is that

the number of organic products in the scanner data has more than quadrupled between 2006

and 2017, and the number of unique flavors has more than doubled. At the same time, the total

number of flavored products has actually declined, meaning the number of unique flavors per

flavored product has increased substantially over time. Though more detailed product charac-

teristics would be greatly beneficial both here and in estimating demand, it is encouraging that

these two measurable dimensions of product characteristics are consistent with the increasing

prevalence of new horizontal product characteristics.17

We will close this section with a discussion of prices and the size of the outside option

over time. Summary statistics of price in this setting can be difficult to interpret, as consumer

price indices often include grocery items like those in my sample. Thus, we should expect that

changes in real prices should on average be small. Moreover, as inflation has been relatively

small, nominal prices should also have been relative constant over time. Still, for completeness,

in Table 2 I calculate the market share-weighted (i.e. sales weighted) price in every store-

week, and present the average across stores for each module.18 There appears to be little to

17For exact numbers associated with these claims, see Table A.1. I construct this table by matching annual
version files to the master file containing the full set of products in the scanner data. I consider a product
as having been sold in a given year if the versions file for that year can be matched to the file containing all
products.

18Any choice of weights to aggregate so many prices has its flaws. Weighting by market shares confounds
changes in consumer behavior with prices. Uniform weights on all prices would place too much weight on less
popular products, which make up a large fraction of unique products sold but a small fraction of purchased
goods. Cost weights would be ideal but I lack the data for such an approach.
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Figure 2: Characteristics of New Products, USDA ERS

(a)

(b)

Note: Tables are reprinted from the USDA ERS website, and were constructed by USDA ERS using data from
the Mintel Global New Products Database. Downloaded by the author from https://www.ers.usda.gov/topics/
food-markets-prices/processing-marketing/new-products/

no pattern in changes in prices over time. Other than in the Yogurt and Remaining Fruits

categories, changes in average prices are quite small relative to 2006 prices.19 This indicates

19Price dispersion is also important to document here, as increasing dispersion could potentially indicate
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that, to the extent that markups have risen, much of this growth must be due to cost reductions.

Finally, in columns 2 and 4 of Table 2 I present the average (across stores and weeks) of

the market share of the outside option (i.e. no purchase within the category) for each module.

If a module had become much more desirable on average over my sample period, or if products

had become significantly higher quality, the size of the outside option would be smaller, and

substitution to the outside option would generally be weaker. If this were the case, estimates

of changes in substitution patterns over time might capture this feature in addition to the

introduction of niche goods. As is the case with prices, the average size of the outside option

has changed little, except in the Yogurt and Remaining Fruit categories. The similarity of

columns 2 and 4 implies that this type of differentiation is unlikely to drive results below,

though I return to a brief discussion of vertical differentiation at the end of Section 8.

To summarize, in this section I have shown that the number of products sold in retail

stores in my sample has increased significantly over recent decades, at the same time as retail

supply chains have become increasingly streamlined and demand focused. Over a similar period,

the number of products with new, or previously rare, characteristics has also grown globally,

and within the Nielsen data to the extent that this can be measured. To the contrary, prices

and the size of the outside option have moved relatively little over time. Thus, although

simplistic measures of horizontal characteristics are consistent with rising variety and/or the

nicheness of retail food products, evidence for changes in vertical attributes and for rising prices

is much weaker. If we find rising differentiation, then, the primary focus will be on horizontal

differentiation. Moreover, if pricing patterns over my sample period are consistent with rising

markups, that trend most likely to be due to declining marginal costs.

5 Structural Model of Demand

In order to measure the extent to which products have become more differentiated over

time we require estimates of the extent to which consumers are willing to substitute between

products. More precisely, we need estimates of the own- and cross-price elasticities of demand

of many products. Toward that end, I estimate a number of models of demand which permit

flexibility in differing directions, most of which fall into the following class of demand systems.

I assume that, after choosing a store at which to shop, consumers select among the available

rising price discrimination even in the absence of changes in average prices. For example, if a firm introduced
a very high and a very low quality good, it could set a high price for the former and a low price for the latter
in equilibrium. Thus, differentiation would generate larger price dispersion. I show in Figure A.2 that this does
not appear to have been the case.
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Table 2: Share Weighted Price and Outside Option Size, by Module and Year

2006 2017

s0 Weighted Price s0 Weighted Price
Fruit Drinks 0.942 2.13 0.941 1.88
Soup 0.931 1.53 0.942 1.57
Cookies 0.910 2.22 0.914 2.20
Pizza 0.941 3.47 0.942 3.59
Ice Cream 0.939 3.86 0.946 3.75
Entrees 0.960 5.85 0.958 5.46
Yogurt 0.902 0.89 0.877 1.43
Remaining Fruit 0.973 4.43 0.913 3.70
Light Beer 0.942 11.56 0.945 12.08

Note: Selected summary statistics for nine modules. The “Weighted Price” column presents the average
(across stores and weeks) of the market share-weighted price among goods in my sample, and s0 presents the
average size of the outside option market share across stores and weeks.

products within a product module to maximize indirect utility functions of the form

uijsw = αi(z)pjsw + ξjsw + εijsw

αi(z) ∼ N(ᾱ(z), σ
2
α,(z))

ui0sw = εi0sw

I use the indices i, j, s, and w to denote consumer, products, store, and week respectively.

The parenthetical subscript (z) refers to three-digit ZIP codes. Consumers are differentiated

by two terms: αi and εijt. The coefficient ᾱi(z) represents the disutility of price for consumer

i and is modeled as a normal distribution. The subscripts (z) are used to indicate that in

some results, which I describe more in future sections, I permit both the mean and variance of

αi to differ in each three-digit ZIP code. Consumers also have idiosyncratic preferences ε for

each product in each week (including the outside option), which are distributed according to

a Type 1 Extreme Value distribution with scale parameter σ. I also permit all consumers in

in each store to observe an unobserved product- and market-specific characteristic ξjsw which

is not observed by the econometrician. In this model, market shares for each product take the

following form

(3) sjsw =

∫ exp(
αi(z)pjsw+ξjsw

σ(z)
)

1 +
∑

k exp(
αi(z)pksw+ξksw

σ(z)
)
dαi
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This model permits product differentiation to change between 2006 and 2017 through

three channels. First, the variance of ε may change over time. The associated scale parameter

σ is the key parameter controlling horizontal differentiation and therefore the “nicheness” of

products. The larger is σ, the larger the variance of ε (relative to pjst), and the less responsive is

demand for a given product to changes in price. This can be seen directly in Equation 3, where

clearly larger values of σ reduces the effective coefficient on price (αi

σ
). In the fullest generality,

the variance of ε might differ across products within a year, as some products are naturally

more broadly appealing (i.e. less niche) than others. With the large number of products in

my data, estimating such a model is infeasible. Although I estimate a model with more than

one scaling parameter in Section 8, for now I will think of σ variance as capturing year-level

average preference heterogeneity across products. Changes in this variance will be particularly

important if more niche products have been introduced over time.

Products can also be vertically differentiated by the unobserved product characteristic ξ,

which permits products to be weak substitutes even conditional on price and preference shocks.

In most of the demand models I estimate, ξ will take the form

(4) ξjsw = ξ̄js + ξ̄(s),(z),w + ∆ξjsw

where ξ̄js denotes average preferences for product j (relative to the outside option) at store s,

and ξ̄(s),(z),w represents the average preferences for the outside option in a given week, which I

also let vary either at the store or three-digit ZIP code level. The former permits consumers,

on average, to rank products differently at each store, which might occur for a number of

reasons including geography-specific advertising, consumers sorting across chains, or heteroge-

neous willingness to pay for quality (e.g. due in part to wealth). The latter is a nonparametric

way to capture seasonality in average preferences for all goods within a category. This seems

particularly important for seasonal goods like Ice Cream, but may also play a role in other

categories.

Finally, the distribution of αi is crucial in determining consumers’ willingness to trade

money for utility. If consumers at the stores in my sample are significantly wealthier in real

terms in 2017 relative to 2006 (and relative to grocery prices) then they may be less price

sensitive, all else equal. This would be captured in my estimates largely through ᾱ and σα,

where the former measures average preferences for price and the latter measures preference

heterogeneity within a market. In some estimates, I will also permit the distribution of αi to

differ by geography (three-digit ZIP code or store), thereby capturing differences in wealth and
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other demographics by geography to the extent that they impact price consumers’ sensitivities.20

6 Estimation

6.1 BLP

Estimation of demand systems like the baseline model herein has been studied by a sub-

stantial literature since the original “BLP” paper (Berry, Levinsohn and Pakes, 1995). Current

best practices are implemented in a new Python package called pyblp, written by Chris Con-

lon and Jeff Gortmaker (Conlon and Gortmaker, 2019). This package provides empirical IO

researchers with an easily customizable way to estimate this standard demand model, and

implements cutting edge numerical tools to speed up estimation. Though the literature de-

scribing the estimation of this type of model is long and in-depth, for completeness I describe

the procedure below as well.

We can rewrite the random utility model in Section 5 as follows:

(5) uijsw = δjsw + σανi + εijsw

where δjsw = ᾱpjsw + ξjsw is the common component of utility derived from product j in

store s in week w, νi is a standard normal random variable, and ε is an idiosyncratic error

term which follows a Type 1 Extreme Value distribution with scale parameter 1. Although I

normalize the scale parameter of ε in each module-year, by letting both the price coefficients αi

and the unobserved characteristics ξ vary across modules and time I am implicitly letting the

variance of preferences vary as well. This is because the scale of utility and the variance of ε

are not separately identified without some additional structure (to see this, note that doubling

αi, ξjsw, and the scale parameter σ leaves Equation 3 unchanged). Changes in estimates of ᾱ

should therefore be interpreted as some combination of changes in the disutility of price and

changes in the variance of ε. In Section 8 I perform a decomposition which measures the relative

importance of these two components of utility in explaining changes in price elasticities over

time.

For each guess of the “nonlinear” parameter σα, which again captures heterogeneity in the

20Some readers may have a preference a nested logit model in which all inside goods constitute a nest. The
fixed effects I include accomplish some of the goals of this approach, and I find that nested models are much
less likely to converge given my inclusion of product-store fixed effects. In Figures A.3 and Figures A.4 I show
one case in which a nested logit model does converge (for Light Beer) with UPC and week fixed effects. The
results are similar to those in the next section.
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disutility of price across consumers, we can construct estimates of market shares

(6) ŝjsw =

∫
exp(δjsw + σανi)

1 +
∑

k exp(δksw + σανi)
dνi

I use this mapping iteratively (each iteration denoted by k) to solve for δ using the following

fixed point problem21,22

δk+1
jsw = δkjsw + log(sjsw) − log(ŝjsw)

where ŝjsw is the model predicted vector of market shares. After δjsw converges for each market

we can recover α by regressing δjsw on price (usually instrumenting for price). This regression

also generates estimates of ξjsw, which can be used to enforce the following moment conditions

to identify α and σ.

(7) E[∆ξjswZjsw] = 0,

where ∆ξjsw and Zjsw denote the residuals of ξjsw and the vector (pjsw, p
2
jsw) (respectively) after

absorbing the fixed effects described in Section 5. In Section 6.4 I offer arguments that price

serves as a valid instrument in this and following models, and I also present one set of estimates

for the model in Section 6.2 which instead use the average price of good j in nearby stores as

a cost-shifter (assuming wholesale costs are spatially correlated) in Appendix Figure A.9.

6.2 FRAC

One important critique of the preceding model, especially in this setting in which I observe

so many stores around the country, is that I do not permit the distribution of αi to differ

geographically. In reality, consumer price sensitivity likely substantively differs across regions

of the country. The most direct extension of the preceding model to permit geographic het-

erogeneity would be to estimate a different pair of distributional parameters α and σ in each

three-digit ZIP code (the finest level of geographic information in my data). This would require

estimating hundreds of parameters via GMM (jointly or separately by geography), which is a

complicated computational problem. In particular, after attempting this for some modules, the

problem is that the contraction mapping necessary to deal with preference heterogeneity (σα)

is still relatively time consuming even when the sample is small. As a result, estimating BLP

21Following the frontier of the literature (and the default in pyblp), this problem is solved via the squarem
algorithm (Varadhan and Roland, 2008; Reynaerts, Varadha and Nash, 2012).

22I calculate the integral in Equation 6 using Gaussian quadrature.
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separately by three-digit ZIP code is too computationally burdensome to attempt here.23

Recently, Salanié and Wolak (2019) introduced what they call the Fast, “Robust,” and

Approximately Correct (FRAC) procedure for the estimation of mixed logit demand models.

Their paper shows that, just as logit models (i.e. models with no random coefficients) can be

estimated via an appropriately specified linear IV regression, random coefficient models like the

one considered here can be approximated by a very similar regression. Their work offers the

following approximation, similar to the frequently used logit inversion, for the demand model

herein

log
(sjsw
s0sw

)
= ᾱpjsw + σ2

αKjsw + ξjsw +O(σ4),(8)

where Kjsw =
(pjsw

2
− esw

)
pjsw

esw ≡
J∑
j=1

sjswpjsw

To estimate this model, one need only construct the regressor K in Equation 8 and run

an IV regression (instrumenting for p and K) which will yield estimates of σ2
α and ᾱ.24 Ab-

sorbing fixed effects as in the preceding BLP model is straightforward, and without imposing

additional constraints there is even a closed form solution for the parameters of interest. Thus,

introducing geographic heterogeneity becomes much more feasible under this approximation.

We can estimate such a model by estimating the following approximately correct regression for

each three-digit ZIP code:

log
(sjsw
s0sw

)
≡ yjsw = ᾱzpjsw + σ2

α,zKjsw + ξjsw(9)

where ᾱz and σ2
α,z are again the mean and variance of random coefficients on price, which I

now allow to differ in each three-digit ZIP code in my sample. With between 500 and 800

three-digit ZIP codes represented in each module, this approximate model permits drastically

more heterogeneity in price elasticities across markets than the preceding model, at the cost of

23The route often taken in studies of random coefficient models like the one here is to include demographic
characteristics in the utility function. In some initial work (not included here) I found that the sample of con-
sumers in the household panel data is insufficient to estimate the store-level demographic distribution precisely.
One could aggregate demographics to the three-digit ZIP code level, but this involves a high computational
cost and is not necessarily more flexible than my FRAC estimates, which are robust to misspecification of the
distribution of random coefficients.

24Note that, even when prices are exogenous, OLS estimates of Equation 8 will be biased in general, as the
constructed regressor K includes market shares which are endogenous by construction.
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requiring the estimation of far more parameters.

In estimating this FRAC model in this setting, I often find estimates of ᾱz which are positive

and σ2
α,z which are negative, seemingly because pjsw and Kjsw are very highly correlated (nearly

co-linear in some ZIP codes). The former is inconsistent with basic economic theory, and the

latter is nonsensical. Broadly speaking, I find one or both of these issues in 10% (or more)

of the ZIP codes in my samples. There are a number of ways to deal with these estimates,

some more ad-hoc than others. The approach I take is to convert the original regression to a

constrained GMM problem, in which I constrain the mean price coefficient ᾱz to be nonpositive

and the variance σ2
α,z to be nonnegative.

In practice, I estimate this constrained FRAC model separately for each three-digit ZIP

code, dropping ZIP codes with fewer than 500 total observations in a module-year. I include

product-store and (ZIP code-)week fixed effects, which I absorb in advance using the methods

(and author-written code) introduced by Somaini and Wolak (2016). Let y+, p+, and K+

denote the vectors log
(
sjsw
s0sw

)
, p, and K after absorbing this set of fixed effects. Further, let

Z+ ≡ (p+, p2(+), p3(+)) denote the vector of polynomial terms in price (after absorbing fixed

effects) which I use as instruments.25 Estimation for each three-digit ZIP code then simply

involves searching over αz, σα,z to solve

min
αz ,σz

Ê
[
∆ξjswZ

+
jsw

]′
W Ê

[
∆ξjswZ

+
jsw

]
(10)

s.t. αz ≤ 0

σ2
α,z ≥ 0

∆ξjsw ≡ (y+
jsw − αzp

+
jsw − σ2

α,zK
+
jsw)

Where Ê denotes the sample mean and W is a weighting matrix which is initially set to

(Z
′
Z/N)−1 and is updated in a second step following the standard two-step efficient GMM

procedure. I find that enforcing these constraints performs very well, and the constraints on

ᾱz are almost never binding in most product modules. I do find that estimates of σα,z are very

close to zero in some modules.26 After estimation, I calculate own- and cross-price elasticities

25Results are similar if the quadratic and cubic terms in pjt are dropped and alternative instruments such as
(pjt− p̄t)

2 and (pjt−maxj pjt)
2 are used. These instruments, under the maintained assumption that prices are

exogenous, are similar in spirit to the “differentiation IVs” offered by Gandhi and Houde (2019). I also present
estimates of αz which instrument for pjt using the average price of good j in nearby stores in Appendix Figure
A.9.

26Another reasonable approach would be to apply an empirical Bayes procedure to the distribution of esti-
mates of ᾱz and σ2

α,z. Empirical Bayes methods are motivated by the fact that extreme estimates of parameters
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using the standard mixed logit formulas, and the relevant integrals are approximated using 200

Halton draws.

6.3 Constant Elasticity

One reasonable critique of mixed logit models is that the structural interpretation of their

estimates relies on correctly specifying the utility function and the size of each market. These

are strong assumptions, meaning it may be fruitful to consider estimates of substitution patterns

which make different assumptions, as a sort of robustness check. To this end, I also consider an

approach similar to that taken by DellaVigna and Gentzkow (2019), a recent paper highlighting

the extent of uniform pricing in retail settings which also uses the Nielsen data. Instead of

estimating a random utility model, we can target the store-module demand function via the

following regression for each store and module

(11) log(sjsw) = ηslog(pjsw) + ξ̄js + ∆ξjsw

where ηs is the store- and module-specific price elasticity, ξ̄js are UPC-store fixed effects.27

As in my other estimates, these regressions are estimated separately by year and by product

module. Though targeting this demand function directly has some aforementioned advantages,

note that this specification does not directly address substitution between products. Thus, we

cannot calculate any estimates of cross-price elasticities from this model.28 Still, estimates of

ηs can inform us of the extent to which price increases lead to declines in quantity demanded

while imposing a different structure than that required by logit models. As shown in Section 4,

substitution to the outside option has not increased in general over the sample period, meaning

that changes in η will largely be due to changing cross-product substitution patterns. To

the extent that estimates of ηs support the conclusions of the other estimated models, this

are likely the result of estimation error. One can regularize these estimates, shifting them closer to the mean.
In early work I found this approach to be much less successful at eliminating nonsensical results than imposing
constraints.

27I also estimate a version of this model which controls for the average of competing prices in each store-
week-module combination. That is, I estimate each ηs in a regression of the form log(sjsw) = ηslog(pjsw) +
βslog(p̄−jt) + ξ̄js + ∆ξjsw. Appendix Figure A.11 presents the results of this exercise, which are very similar to
my results corresponding to the model in this section.

28If this model is interpreted in the Berry, Gandhi and Haile (2013) framework, then the inverse demand
function includes only a product’s own price and market share, meaning cross-price elasticities are identically
zero. This interpretation also indicates that structural interpretation of this demand model requires a strong
form of symmetry, as a more general model (even without cross-substitution) would imply that η should differ
for every product.
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strengthens the findings herein significantly.29

Estimating this model yields more than 100,000 estimates of ηs (across all stores and mod-

ules). Although I drop stores with fewer than 200 total observations in a module-year it is

likely, given the relatively small sample used to estimate each ηs, that the most extreme es-

timates are due in large part to estimation error. Comparisons involving these noise-ridden

estimates are likely to overstate changes over time, as some estimates in 2006 are less precise

than their 2017 counterpart (largely due to the growth in the number of products, i.e. obser-

vations, per store). To alleviate some of this concern, I employ an empirical Bayes shrinkage

procedure, following Morris (1983) and as implemented in Chandra et al. (2016)30. This pro-

cedure “shrinks” estimates which are imprecisely estimated toward the module-year mean of

estimates, and is similar to many recent empirical papers which estimate a large number of

parameters of interest (e.g. fixed effects) (Abaluck et al., 2020; Hull, 2018). All proceeding

discussions and figures involving estimates of ηs refer to estimates after applying this shrinkage

procedure unless otherwise specified.

6.4 Price Endogeneity

In estimating all models of demand in this paper I treat prices as exogenous with respect

to changes in market- and product-level unobservable (to the econometrician) determinants of

demand. As much of the IO literature has focused on developing good instruments for price,

some time should be spent to explain why prices in the retail sector seem unlikely to be affected

by the traditional critique, that prices are set by firms in response to (or anticipation of) changes

in consumer demand which are observed by the firm and not by the econometrician (i.e. ∆ξjsw).

To justify the use of price as an instrument, I operate under two assumptions: (i) prices are

set before the demand shock ∆ξjsw is realized, and (ii) firms are unable to predict these shocks in

advance. With regard to (i), evidence suggests that menu costs are non-trivial (Stamatopoulos,

Bassamboo and Moreno, 2020), meaning stores are unlikely to be able to respond quickly to

small changes in demand. On (ii), recent work by Hitsch, Hortacsu and Lin (2019) (using the

Nielsen data as well) indicate that even store-level differences in demand within a chain may be

difficult to precisely estimate given the data that firms are likely to have. Given this finding,

weekly variation in product-specific demand seems significantly less likely to be well estimated

29To estimate this model, I absorb product-store fixed effects from prices and market shares using the reghdfe
command in Stata (Correia, 2016) and then run the user-written regressby (by Michael Droste) to estimate
Equation 11 at every store for each module. I calculate heteroskedasticity-robust standard errors which I adjust
manually to account for absorbed degrees of freedom.

30I implement this approach via the ebayes Stata command written by Adam Sacarny.
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by managers. Note also that I include product-store fixed effects in all estimates and either

store-week or ZIP code-week fixed effects in my structural estimates, and that price only needs

to be uncorrelated with the residual ∆ξjsw after absorbing these fixed effects. I am therefore

only assuming that prices are exogenous with respect to changes in demand within a product

at a given store. This means that firms can price according to store-specific demand for each

product, as well as (in my mixed logit estimates) store-level changes in demand across weeks

(e.g. seasonality in demand for ice cream), but assumes that firms do not price according to

changes in demand for a product in a given week. This argument is similar to that made

in Hitsch, Hortacsu and Lin (2019), who also estimate a model of demand treating prices as

exogenous conditional on a similar set of fixed effects.

There are a number of other pricing behaviors which could also make prices exogenous

conditional on the included fixed effects, even if the timing assumption I make is invalid. Ex-

isting evidence indicates that many retail chains appear to price nearly uniformly across stores

within a week. Whether this is indicative of uniform or zone pricing on the part of retail chains

(DellaVigna and Gentzkow, 2019; Adams and Williams, 2019) or uniform markups over geo-

graphically homogeneous wholesale costs (Butters, Sacks and Seo, 2020), this significantly limits

the extent to which prices can be priced in response to market demand shifters. In a different

vein, Conlon and Rao (2019) present evidence that retailers selling alcohol in Connecticut tend

to set prices at a small number of discrete prices (e.g. those ending in “.99”), and that the

majority of prices that change in response to tax increases move by whole dollar increments.

Anecdotally, this is true more broadly, and the extent of endogenous price responses is natu-

rally limited to the extent that firms maintain this discrete pricing behavior in the categories I

study.31

There is also evidence that retail stores do not respond by changing prices in responses to

changes in local competition. For example, although Arcidiacono et al. (2019) find a significant

effect of superstore entry on incumbents’ revenue, they find no such effect on price. That is,

even when the entry of a new competitor decreases revenue at a given store by more than 10%,

that store tends not to decrease its prices in any meaningful way. They conclude that the

most likely explanation for this pair of findings is that stores follow pricing strategies which

are independent of the demand they face. In particular, they argue (drawing on evidence from

31For example, many changes in demand which the firm might respond to are likely small enough that the
optimal price changes by less than a dollar. If firms are constrained (e.g. by norms) to end prices in 0.99, then
the firm may not respond at all to such a demand shock. More broadly, the firm can only fully respond to the
very specific shocks to consumer demand which imply that the optimal price is one of the acceptable discrete
values.
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Eichenbaum, Jaimovich and Rebelo (2011)) that so-called “cost-plus” pricing is most likely.

The key remaining source of potential endogeneity comes from inventory behavior on the part

of consumers, which I assume has been addressed by the procedure in Section 3.3.

7 Results

In this section I offer two broad sets of results. First, I show that own- and cross-price

elasticities have declined over time across a broad range of products and in each of the models

of demand I have estimated. Second, I calculate markups implied by monopoly pricing at the

module-store-week level. These hypothetical markups are not meant to be estimates of true

retailer markups. Rather, this calculation is a helpful way to learn the general magnitude of the

effect these changes in demand may have had on retailers’ variable profits to date. Given the

substantial recent literature on retail pricing, any assumed pricing strategy seems likely to be

misspecified. These markups simply offer a way to measure whether the substitution patterns

shown here are sufficient to imply increases in markups under a simple model.

7.1 Demand Estimates

7.1.1 BLP

In Figure 3(a) I plot my first set of results, which are kernel densities of the distribution of

price elasticities across all stores and products (in all nine modules) in my sample for 2006 and

2017. These distributions, which are composed of more than 150 million product-store-week

observations, indicate a substantial shift to toward zero over this decade. Although much of

the distribution in 2006 is to the left of -2, by 2017 we can see that the distribution has shifted

significantly to the right. In columns 1 and 3 of Table 3, I present estimates of various quantiles

of each of these distributions, ranging from the 5th percentile to the 95th. At each quantile, price

elasticities are noticeably smaller in 2017 (in absolute value) than in 2006. On average, price

elasticities declined from -2.16 to -1.62, a change of 25%, and very similarly at the median.32

Cross-price elasticities show a similar shift toward zero. In Figure 3(b), I calculate the

average cross-price elasticity for each product in each market, and plot the distribution of

these averages in 2006 and 2017. Dealing with averages smooths the distributions significantly,

32One reasonable concern is that many estimated own-price elasticities, especially in 2017, are less than 1 in
absolute value (this is true in all results which follow as well). In standard models, this implies that firms are
not short-run profit maximizing. To this point, one should note that Hitsch, Hortacsu and Lin (2019) estimate
tens of millions of price elasticities across thousands of products using the Nielsen data and also find that many
price elasticities are less than 1.
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Figure 3: Distributions of Estimated Own- and Cross-Price Elasticities (BLP)
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Note: BLP estimates of own-price elasticities across all 9 modules in the first 16 weeks of 2006 and 2017. Top
and bottom 1% of each distribution have been trimmed.

meaning some detail is lost, but it necessary due to the disk space which would be required

to store the full set of cross-price elasticities for all observations. Consistent with the notion

that differentiation has increased in some way, cross-price elasticities have shifted significantly

toward zero in 2017 relative to 2006, meaning changes in prices of goods are much less likely

to induce substitution between products in 2017 than even a decade before. Figures 3(a) and

(b) together demonstrate the headline result of this paper: differentiation appears to have

substantially increased across many stores and products in the United States.

These results, while stark, aggregate over much of the variation in the data. One appeal of

the level of detail provided by the Nielsen scanner data is that we can study whether substitution

patterns have changed similarly across different groups of products. The median own-price

elasticities in each module-year can be found in columns 1 and 3 of Table 4. In all but one of

the nine modules I study (Ice Cream), I find that own-price elasticities have shifted toward zero

substantially over the sample period.33 Of the modules which see an increase in differentiation,

the median decline ranges from approximately 11% (Frozen Pizza) to more than 30% (Fruit

Drinks and Yogurt). Recall that estimates for each module in each year are the result of

structural BLP estimates of demand which are estimated entirely separately from each other (18

estimated demand models in total). Thus, the changes we see in these substitution patterns in

many modules are identified solely by within-module variation over time. Thus, the agreement

33Notably, among all 18 estimated BLP models, my only numerical issue arises in my 2006 estimates for Ice
Cream, where I find that σ̂α touches the lower bound I enforce in estimation.
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of all but one module is strong initial evidence that price sensitivity has declined broadly.34

I now move on to the FRAC model, which relaxes the assumption that the distribution of

preferences is homogeneous in all stores.

Table 3: Own-Price Elasticities and Implied Markups

2006 2017
BLP Own-Price Elasticity Markup Own-Price Elasticity Markup
5% -3.13 -1.19 -2.47 -10.00
25% -2.60 1.72 -2.00 1.88
Median -2.17 1.98 -1.65 2.36
75% -1.75 2.40 -1.27 3.20
95% -1.06 4.62 -0.72 8.31
FRAC

5% -5.94 -1.85 -3.65 -8.42
25% -3.09 1.64 -2.30 1.72
Median -2.34 1.92 -1.77 2.32
75% -1.74 2.47 -1.29 3.45
95% -0.93 5.94 -0.73 11.33

Note: Shown are the mean, median, and other quantiles of the own-price elasticity and implied markup
distribution for all BLP and FRAC estimates, pooling all nine modules in my sample.

7.1.2 FRAC

The preceding estimates, while able to approximate flexible substitution patterns, do make

the strong assumption that both the mean and variance of preferences for price are identical

across locations. Further, because price elasticities represent a combination of revealed pref-

erences and equilibrium prices, it is uncertain whether changing preferences (i.e. changing

differentiation) plays a critical role in these estimates. Now I move to my second set of demand

estimates, i.e. those from the FRAC approach, which will address both of these concerns to

some degree. In many ways, the results of this section are very similar to those in the preceding

section.

The central way in which these FRAC results differ from BLP estimates is that I have es-

timated preferences independently in many geographies. In Figure 4 I present the distribution

of my estimates of the mean of random coefficients on price in the utility function (ᾱ) across

34Though omitted here, for each module, I also calculate the average own-price elasticity estimate within
each UPC in each year, and plot the distributions of these means across products in both years. The full set of
module-specific plots of this form are shown in Figure A.6.
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Table 4: Median Price Elasticities and Implied Markups, by Year and Module

BLP Own-Price 2006 Markups 2006 Own-Price 2017 Markups 2017
Fruit Drinks -2.47 1.79 -1.66 2.26
Soup -2.09 2.09 -1.50 3.14
Cookies -2.01 2.16 -1.52 3.06
Pizza -2.59 1.80 -2.31 1.89
Ice Cream -1.88 2.22 -2.01 2.20
Entrees -1.91 2.19 -1.60 2.46
Yogurt -2.16 2.15 -1.40 2.48
Remaining Fruit -2.38 1.75 -1.87 2.47
Light Beer -3.36 1.49 -2.93 1.62
FRAC

Fruit Drinks -2.26 1.82 -1.55 2.20
Soup -4.00 1.97 -2.41 2.90
Cookies -2.08 2.01 -1.59 2.55
Pizza -2.31 1.88 -2.22 1.90
Ice Cream -1.93 2.01 -1.87 2.28
Entrees -1.92 2.09 -1.55 2.42
Yogurt -2.28 1.89 -1.44 2.13
Remaining Fruit -2.40 1.73 -2.04 2.18
Light Beer -3.13 1.49 -2.23 1.67

Note: Shown are the medians of the full distribution of own-price elasticities and implied markups for 2006
and 2017, calculated separately for each module studied. Estimates shown separately for BLP and FRAC
estimates.

three-digit ZIP codes in each year. These figures show us that, in each product module, esti-

mated average price coefficients are significantly smaller in 2017 than in 2006. Note that these

are estimates of utility parameters, and thus provide a new result relative to the preceding BLP

estimates. Because the densities in 2017 (blue, dashed) are often significantly to the right of

the densities in 2006 (black), this implies a shift in the effective disutility of price over the span

of the sample. As in my BLP estimates, each density in this figure is the result of an entirely

separate estimation procedure, making their relative agreement quite stark. This is even more

true here, where each density is the result of hundreds of (approximate) mixed logit demand

estimates.

As described in Section 6.1, these estimates of ᾱ confound two potential changes. In es-

timating these each of these FRAC models, the variance of ε is normalized to π2

6
. This means

that estimated changes in ᾱ may be the result of changes in σ (which scales the variance of ε)
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or changes in ᾱ itself. The latter could be the driving force if consumer wealth has increased

substantially relative to prices in these categories, or if the demographic composition of con-

sumers at the stores in my sample has changed significantly. The former, to the contrary, would

indicate that products are, on average, more niche in 2017 than in 2006 (because preferences in

2017 have larger variance). For now, these are indistinguishable, but in Section 8 I demonstrate

that preference heterogeneity specifically plays a significant role.

Now turning to estimates of differentiation, the story is quite similar to that in the preceding

section. In Figure 5 I plot the distribution of own-price elasticities across all nine modules after

trimming the top and bottom 1% in each year. Again, I find that this distribution has shifted

significantly to the right in 2017 relative to 2006, and estimated own-price elasticities are

similar in magnitude to my BLP estimates in both years. At the median, these elasticities have

declined from -2.34 to -1.77, and a similar decline is also found at the mean and at a number

of percentiles of the distribution, as described in columns 1 and 3 of Table 3. I also present

median own-price elasticities for each module in each year in Table 4, which demonstrates that

own-price elasticities have declined in all modules. The distribution of cross-price elasticities

(Figure 5(b)) also exhibits a noticeable shift toward zero.35,36

Although I have estimated the FRAC model to permit geographic preferences heterogene-

ity, up to this point it is unclear whether the heterogeneity I find in my estimates represents

differing preferences or estimation error. To be specific, one may worry that the variance, and

in particular the long left tail, of own-price elasticities and estimated utility parameters here

largely represents estimation error around BLP estimates from the preceding section, due to

the relatively small sample size contributing to each FRAC estimate. If this were driving all of

the estimated differences, FRAC estimates of ᾱ would be uncorrelated across modules. I show

in Table A.2 that this is not the case. To the contrary, estimates are generally significantly

correlated across modules in both years. This seems to imply that preferences for price, and/or

the nicheness of products, do differ significantly across geographies. Whereas this geographic

heterogeneity can be quite difficult to incorporate in the standard BLP estimation procedure,

it is easily incorporated in FRAC.

35I also calculate UPC-level average own-price elasticities for each module-year, which I omit here to save
space but display in Figure A.8.

36One remaining concern with the estimates herein may be that either 2006 or 2017 are anomalous years in
the data. I show in Appendix C that, in the Yogurt category, these patterns over time follow a clear trend,
making this story unlikely.
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Figure 4: Distribution of Estimates of ZIP Code-Level Price Coefficients
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Note: Distributions of estimated mean utility coefficient on price, in 2006 (black, solid) and 2017 (blue, dashed).
Estimates come from solving the constrained least squares problem in Section 6.2 separately for each three-digit
ZIP code, module, and year.
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Figure 5: Distributions of Estimated Own- and Cross-Price Elasticities (FRAC)
0

.2
.4

.6
De

ns
ity

-10 -8 -6 -4 -2 0
Own-Price Elasticity (FRAC)

2006 2017

0
20

0
40

0
60

0
D

en
si

ty

0 .002 .004 .006 .008
(Avg) Cross-Price Elasticity (FRAC)

2006 2017

Note: FRAC estimates of own- and (average) cross-price elasticities across all 9 modules in the first 16 weeks
of 2006 and 2017. Top and bottom 1% of own-price elasticities have been trimmed, as have the top and bottom
5% of average cross-price elasticities in each year.

7.1.3 Constant Elasticity

I now present my estimates of the constant elasticity demand model, for which I estimate

more than 100,000 store-level price elasticities. As mentioned in the estimation section, I apply

an empirical Bayes shrinkage procedure to these estimates before plotting them here. The

distributions of these (post-shrinkage) estimates are shown in Figures 6(a) and (b).37 In Figure

6(a) I plot the full distribution of module-store-level estimates of price elasticities in 2006 and

2017. In order to demonstrate that no single product module is driving these results, in Figure

6(b) I calculate store-level averages of estimated elasticities and plot the distribution of these

averages across stores. A figure replacing store-level means with medians looks very similar,

and my results are qualitatively unchanged when I also control for the average of competing

prices in each regression (results shown in Figure A.11). As in the two structural models, these

estimates imply that price elasticities have shifted substantially to the right over the sample

period. Furthermore, the magnitudes of price elasticities in the two periods are quite similar to

estimates of price elasticities from FRAC (Figure 5). This is encouraging, as these two models

make very different assumptions about consumer choice (as discussed in the preceding section).

37Table A.3 presents the mean and selected quantiles of the distribution of pre- and post-shrinkage estimates.
The two distributions are generally very similar.
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Figure 6: Distributions of Price Elasticities (Constant Elasticity)
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Note: Figure (a) presents the distribution of estimates of ηs, the store-module-level price elasticity. Figure (b)
presents the distribution of store-level averages of these estimates (i.e. averaging across the modules offered by
a store).

7.2 Implied Markups

In this section I use the preceding demand estimates to calculate markups which would

be implied under the assumption of monopoly pricing at the store-module level. Although in

general I am hesitant to impose the full structure of a supply side model, assuming a model of

supply side behavior can give us some idea of the magnitude of changes in markups over my

sample period. For simplicity, I treat firms as pricing monopolistically at the store-module-week

level, taking into account all cross-effects between products in a module. This is not meant

to represent structural estimates of true markups at the store level. Rather, I think of this

exercise as providing a sense of the potential magnitude of increasing profits due to the changes

in demand which I have documented in this section. Given that we have already seen that

prices have changed little on average in most modules, these estimates could reasonably be

interpreted as one measure of the magnitude of cost reductions over time.

7.2.1 BLP

Under monopolistic pricing, optimal margins satisfy the following equality

(12) p∗ −mc = −J−1
p (p∗)s(p∗)
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where p∗,mc and s are vectors of product-store-week-level prices, marginal costs, and market

shares, and J−1
p is the inverse of the Jacobian of store-level market shares with respect to prices.

Because prices are known and the demand function has been estimated, this equation implies

estimates of marginal costs for each product in every store. Implied markups ( p
mc

) can then be

calculated from those marginal costs. I use my estimates from BLP-style models to construct

these estimated markups separately for each product module in each year, and present them

first in Figure 7. In this figure I plot the distribution of implied markups from the 25th to the

75th percentile in 2006 (black, solid) and 2017 (red, dashed). I focus on this small range of the

distribution because many points outside of this range are either negative or so large in absolute

value as to be uninformative in either direction. This is one reason why these estimates should

not be taken as estimates of true retailer markups. Still, within the interquartile range Figure

7 indicates significant growth in implied markups over the decade. At the median, implied

markups have increased from 1.95 to 2.36 (see columns 2 and 4 of Table 3), an increase of 20%.

At the 95th percentile implied markups have nearly doubled from 4.62 to 8.31.38

My demand estimates (which underly implied markups) are quite consistent with other

estimates of price elasticities in the Nielsen data (Miller and Weinberg, 2017).39 It is also

worth comparing these results to estimates in De Loecker, Eeckhout and Unger (2020), who

present estimates of markups from Compustat, which covers publicly traded retail firms, and

from the Census of Retail which contains the universe of retail firms. The retail industry they

study is much broader than the retail food industry herein, and their methods and data differ

substantially, as they do not observed product-level prices or sales. Although their Compustat

estimates indicate very small increases in markups in this industry over the past 40 years, their

estimates from the Census indicate a sharp increase in markups at the mean from slightly

above 2 to slightly above 3 between 2002 and 2012 alone (Figure 12(c) therein). Further, these

estimates imply that at the 95th percentile markups have rise from between 3 and 4 to nearly

7. Clearly, my estimates tend to agree more with the Census estimates. The most notable

difference, which is a key point of this paper, is that all of the changes in implied markups

I estimate are the result of within-firm (and in fact within-establishment) changes in variety

and consumer preferences, and do not require any changes in competitive behavior or market

power (in the traditional sense). Thus, although my estimates match this set of estimates by

38In Appendix Figure A.7, I plot the distribution of markups implied by my BLP demand estimates separately
by module.

39The apparent differences in headline numbers between, for example, my results in the Light Beer category
and estimates in (Miller and Weinberg, 2017) appear to come from the difference in the number and character-
istics of goods in our samples. When I restrict my Light Beer sample to one more similar to theirs, I find that
my estimates of price elasticities are very similar.
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De Loecker, Eeckhout and Unger (2020) reasonably well, they provide an alternative explanation

with very different policy implications.

As was the case with the demand estimates in the preceding section, these results are

not being driven by a small subset of modules. To demonstrate this, for each module I divide

implied markups into 100 equally sized bins in each year, take the average of all markups within

each bin, and plot these binned averages in 2017 against the same bin in 2006.40 Again I focus

only on the interquartile range of each distribution. These plots are essentially quantile-quantile

plots, meaning that if the distribution of implied markups were unchanged over this decade, I

would find that all points lie along the plotted 45-degree line. If parts of the markup distribution

have shifted to the right over time, these points should be above the 45-degree line. Figure

8 tells a clear story. In all but the Ice Cream category, estimated markups are substantially

larger in 2017 than in 2006 along nearly the entire interquartile range.

Figure 7: Interquartile Distribution of All Implied Markups (BLP)
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Note: BLP estimates of implied markups across all nine modules in the first 16 weeks of 2006 and 2017. Markups
were calculated under the assumption that firms price monopolistically within each store-module-week, taking
into account cross-substitution between all goods within a module. Only the interquartile range of implied
markups is shown here.

40This is similar to the results of the “qqplot” command in Stata, which plots quantiles of two distributions
against each other. I focus on the mean in these equally sized bins because quantiles are often much more
sensitive to small variations in the data.
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Figure 8: Quantile-Quantile Comparisons of Markups in 2006 and 2017 (BLP), by Module
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Note: I calculate 100 equally sized bins of implied markups in each year for each module, and calculate the
mean within each bin. This figure plots the 2017 mean in a given bin (quantile) against the 2006 mean from
the same bin, along the interquartile range for each module. The red line denotes the 45 degree line.

7.2.2 FRAC

Next, following the discussion in the previous section, we can convert FRAC demand

estimates into estimates of markups under the same assumption, that each store prices monop-

olistically each week with in a module. Again, these markup estimates give us a ballpark figure

to understand how a perfectly optimizing monopolist might have benefitted from the changes

in demand documented in preceding sections. In Figure 9 I plot the interquartile range of

monopolists’ markups across all products, stores, and weeks in my sample according to FRAC

demand estimates. Just as in Figure 7, the distribution of implied markups has shifted signif-

icantly to the right in 2017 relative to 2006. Consistent with my finding that the distribution
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of price elasticities estimated by FRAC has a longer left tail than that of BLP estimates, the

distribution of markups is somewhat wider in both years. As a result, some of the apparent

markup growth here appears to come from the right tail of the distribution. Still, the general

magnitude of implied markups are quite similar between the two Figures (7 and 9).

In Figure 10 I again plot quantiles of the implied markup distribution in 2006 and in 2017

as well as the 45-degree line. Just as is the case in my BLP results, I find that in the majority of

categories the markup distribution has shifted noticeably to the right. The shape of these shifts

differ by category, but the majority of modules demonstrate a significant shift particularly in

the right tail of the distribution. Before moving on, we can note a few key differences. First,

unlike in my BLP estimates, FRAC-implied markups in the Ice Cream category have increased

over time, meaning that all modules see an increase at the median. However, at the bottom of

the interquartile range, implied markups in Yogurt (g) are smaller in 2017 than in 2006, and in

Pizza (d) the two distributions are quite similar across the entire range. Still, altogether, we see

a general increase in implied markups across the vast majority of quantiles in most modules.

Figure 9: Interquartile Range of Markups (FRAC)
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Note: FRAC estimates of implied markups across all nine modules in the first 16 weeks of 2006 and 2017.
Markups were calculated under the assumption that firms price monopolistically within each store-module-
week, taking into account cross-substitution between all goods within a module. Only the interquartile range
of implied markups is shown here.
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Figure 10: Quantile-Quantile Comparisons of Markups in 2006 and 2017 (FRAC), by Module
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Note: I calculate 100 equally sized bins of markups implied by my FRAC estimates in each year in each module,
and calculate the mean within each bin. This figure plots the 2017 mean in a given bin (quantile) against the
2006 mean from the same bin, along the interquartile range for each module. The red line denotes the 45 degree
line.

7.2.3 Constant Elasticity

Under the constant elasticity specification of demand, optimal pricing follows a very simple

rule. Assuming that firms price each good entirely independently, optimal markups in each store

can be characterized by

(13)
pjsw
mcjsw

=
ηs

1 + ηs
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Thus, we can plug estimates of ηs (store-level price elasticities) into this equation to derive

markups implied by this pricing assumption. In Figure 11(a) I present the distributions of these

implied markups in each year, trimming the top and bottom 10% of each distribution. Note

that, unlike in the preceding estimates, in this case optimal markups are calculated not for each

product separately, but rather at the store-module level, because the estimated model assumes

that price elasticities for different products in a module-store-year are identical. Further, these

estimates are solely regarding optimal implied markups, and do not provide any information as

to whether firms are actually charging higher markups. Preceding estimates, to the contrary,

represented estimates of markups implied by observed prices under an optimal pricing rule.

The findings in Figure 11(a) may appear to be ambiguous, as many estimates in both years

are negative. That is, the distribution in 2017 includes a longer right tail than in 2006, but also

a longer left tail. This is to be expected, given the significant fraction of price elasticities which

are less than 1 in Figure 6. To remove some of the impact of these categories, I also calculate

the store-level median of markup estimates (i.e. across modules) in each year, and plot these

distributions in Figure 11(b), again trimming the top and bottom 10% of estimates. This figure

presents a story much more clearly consistent with the demand results, that optimal markups

have increased across the vast majority of stores.

Figure 11: Distributions of All Optimal Markups (Constant Elasticity)
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Note: Figure (a) presents the distribution of all plug-in estimates of optimal markups from the constant elasticity
demand model (Equation 13), and Figure (b) presents the distribution of store-level medians (across modules)
of these estimates. The top and bottom 10% of each distribution are omitted.
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8 Testing Model Predictions

Thus far, I have documented substantial changes in consumers’ willingness to substitute

between products. These changes, by definition, imply that perceived differentiation has in-

creased. Still, in the simple model I presented I argued that the most natural way for differ-

entiation to have changed over time was through the changes in the variance of preferences for

horizontal attributes of goods, which is in part due to the introduction of more niche goods.

This section aims to discuss the strength of the evidence for these claims in particular.

8.1 Nicheness vs. Price Sensitivity

As discussed in Section 6, in estimating the preceding models I normalize the variance of

horizontal preferences (σ) because this variance is not separately identified from the disutility

of price without additional structure. Thus, the results in Figure 4, which demonstrate the

changes in the estimated disutility of price, confound the two. It is therefore possible that the

results thus far represent a change in demographics, e.g. wealth, which have caused consumers’

price sensitivities to decline absent any change in preference heterogeneity. It is also possible

that newer products are more vertically differentiated (e.g. higher quality), which to this

point I have generally left unmentioned. To explore the roles each of these mechanisms may

have played, and to isolate the contribution of preference heterogeneity to the observed trends,

consider the following logit model, where utility takes the form:

uijsw =

α2006pjsw + ξ̄js + ∆ξjsw + εijsw, V ar(εijsw) = σ2
2006

π2

6
in 2006

α2017pjsw + ξ̄js + ∆ξjsw + εijsw, V ar(εijsw) = σ2
2017

π2

6
in 2017

(14)

Note that I do not include store-week fixed effects here, as these would make the interpretation

of product fixed effects ξ̄js more complicated. Though I omit this notation, I allow α and σ to

vary not only across years, but also at every store. Otherwise, my notation here is largely the

same as in Section 5, except that I make explicit that both the coefficient on price in the utility

function and the variance of ε have changed over time. Note that I assume, to the contrary, that

the fixed effects ξ̄js do not change over time for a given product. To the extent that ξ̄js represents

preferences for fixed, unobserved, product characteristics, this assumption is relatively weak.

On the other hand, these fixed effects may indeed change over time if advertising has increased

average preferences for some goods relative to their competitors.

To identify the relative importance of the disutility of price and horizontal differentiation
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in determining changes in substitution patterns, I first apply the standard logit inversion in

each year:

(15) log
(
sjsw/s0sw

)
=

α2006

σ2006
pjsw +

ξ̄js
σ2006

+ ∆ξjt in 2006

α2017

σ2017
pjsw +

ξ̄js
σ2017

+ ∆ξjt in 2017

where I emphasize that the effective/estimated fixed effects and price coefficients in each year

are dependent on the variance of ε, just as in Equation 3.41 What is important to see here is that

although the difference between price coefficients over time represents a combination of changes

in price sensitivities (α) and differentiation (σ), changes in the magnitudes of estimated fixed

effects offer an estimate of the latter alone. Thus, by comparing the magnitudes of estimates

of product fixed effects in 2006 and 2017, we can derive an estimate of σ2017
σ2006

, which will allow

us to decompose the changes in demand in the previous section to show to what extent price

elasticities would have changed in the absence of any rising preference heterogeneity. There are

many choices for deriving an estimate of σ2017
σ2006

. Perhaps the most direct route is to calculate an

estimate of σ2006 for each product which is sold in a store in both 2006 and 2017. However, this

is sensitive to estimation noise in individual fixed effects, which can be quite large. Instead, I

take the standard deviation of product fixed effects (among products sold in a store in both

years) as an estimate of 1
σy

for each year y, and use the ratio of these quantities as a measure

of the ratio of scale parameters of ε.42

From this, we can also derive the extent to which α (the true disutility of price) changed

as well, as

Ratio of estimated price coefficients︷ ︸︸ ︷
α̂2006

α̂2017

×

Estimated change in pref. het︷ ︸︸ ︷
σ̂2006

σ2017

=
α̂2006

σ2006

× σ̂2017

α2017

× σ̂2006

σ2017

=
α̂2006

α2017︸ ︷︷ ︸
Estimated change in price disutility

With estimates of the changes in σ and in α separately, we can now study the importance

of each by estimating price elasticities in 2017 under 2006 levels of horizontal differentiation

and/or price disutility. What this algebra shows is that if we find that estimated fixed effects

41The residual ∆ξjt is also rescaled, but I omit that notation for brevity.
42I estimate this model using the reghdfe command in Stata (Correia, 2016), to estimate many fixed effects

and many store-level coefficients on price at once.

41



and estimated price coefficients have changed by the same multiplicative factor, we should

conclude that most changes in price elasticities are due to rising horizontal differentiation. To

the extent that the two differ, the disutility of price may have also changed over time.

I conduct this exercise by constructing two counterfactual distributions of price elasticities

in 2017. Note that estimated own-price elasticities in a logit model are equal to

∂sjt
∂pjt

pjt
sjt

= α̂pjt

(
1 − exp(α̂pjt + ξ̂jt)

1 +
∑

j exp(α̂pjt + ξ̂jt)

)
Thus, to calculate the desired counterfactuals I first rescale the mean utility term α2017pjsw +

ξjsw, as well as my estimates of α2017, by σ2017
σ2006

. This sets the effective variance of ε (i.e. preference

heterogeneity) in each store to its 2006 levels. In a second counterfactual, I also rescale α̂2017

by my estimate of α2006

α2017
, thereby setting both the variance of ε and the disutility of price to 2006

levels.

In Figure 12 I plot the results of this exercise in the form of four distributions. In black

(solid) is the distribution of estimated price elasticities in 2006. The estimated price elasticities

in 2017 are in grey. In red (dashed) is the first counterfactual distribution, in which I recalculate

all price elasticities 2017 after rescaling to set the variance of ε to 2006 levels for each store. The

magnitude of the importance of horizontal differentiation is apparent from this plot. Removing

the effects of preference heterogeneity over this decade shifts the distribution of price elasticities

in 2017 much further to the left and much closer to the estimated distribution in 2006, meaning

that explanations for the demand estimates herein that rely solely on the disutility of price or

on changes in the price distribution leave much of the observed changes unexplained. In Figure

A.12 of the Appendix I show that this result is true to varying degrees in most modules as well.

Finally, in green (dot-dashed) I show the second counterfactual distribution, which calculates

price elasticities in 2017 under 2006 levels of both preference heterogeneity and disutility of

price. Parts of this distribution are significantly closer to my estimates in 2006 than even the

first counterfactual, meaning that the disutility of price plays a role in declining price elasticities

which is distinct from the rise of preference heterogeneity.

To make the similarity of the red (counterfactual preference heterogeneity) and black (2017

estimates) lines more concrete, I also present Table 5, in which I display the mean and selected

quantiles of each of the three distributions. The proximity of the counterfactual 2017 distri-

bution to the estimated distribution in 2006 is stark. Although they differ noticeably at most

quantiles, the differences between these two distributions is in all cases smaller than the dif-
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ference between the estimated distributions in 2006 and 2017. In this way, rising preference

heterogeneity appears to have played a significant role in the trends in differentiation shown

above.

Figure 12: Distributions of Estimated and Counterfactual Own-Price Elasticities
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Note: In black and grey I show estimates of price elasticities from a logit model with store-specific preferences
in 2006 and 2017 (respectively). In red (dotted) I plot the distribution of 2017 price elasticities under the
counterfactual in which horizontal differentiation in each store were set to its 2006 level, and in green (dot-
dashed) I plot this distribution after also adjusting the disutility of price to 2006 levels.

Table 5: Distribution of Estimated and Counterfactual Own-Price Elasticities

2006 Estimates 2017 Counterfactuals 2017 Estimates
Mean -2.13 -2.33 -1.7
10% -4.00 -4.08 -3.21
25% -2.89 -2.73 -2.25
Median -1.89 -1.76 -1.47
75% -1.16 -1.10 -.87
90% -.63 -.64 -.50

Note: Mean and selected quantiles of estimated own-price elasticities in 2006 and 2017, and counterfactual 2017
estimates in which store-level preference heterogeneity is set to 2006 levels (dashed, red in Figure 12). Estimates
derived by store-level logit models (Equation 15).

One concern with Figure 12 is that it could, in principle, mask significant heterogeneity
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across products. That is, although the full distribution of counterfactual estimates is much

closer to the 2006 distribution than are the 2017 estimates, it could be that average price

elasticities at the UPC level have moved substantially within this distribution, meaning that

Figure 12 overstates the role of preference heterogeneity in my demand estimates. To address

this concern, I calculate average price elasticities for each product in each year. I calculate

the difference in this average between years for each product which appears in both years,

both for my estimates and under the desired counterfactual. The distributions of realized and

counterfactual differences are plotted in Figure 13, where I show that while estimated elasticities

increase by 0.38 at the median, UPC-average counterfactual elasticities increase by only 0.1.

This makes clear that, in fact, returning differentiation to 2006 levels reduces the estimated

average change in product-level price elasticities significantly.

Figure 13: Counterfactual Changes in Price Elasticities without Preference Heterogeneity
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Note: Distributions of average changes (between 2006 and 2017) in own-price elasticities at the product level.
Changes implied by store-level logit estimates are in black (solid), and changes implied by a counterfactual
which sets preference heterogeneity to 2006 levels in each store are in red (dashed).

8.2 Are New Products More Niche?

The final prediction of the simple model in Section 2 is that newer products are likely to be

more niche than older products. Although I take the preceding section as evidence that products

are more niche in 2017 than in 2006 on average, it could be that all products have become more
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horizontally differentiated over time due to, for example, effective advertising. This is difficult

to test directly, in large part because it’s unclear how best to define “new” given that only two

years (a decade apart) are observed. Given the caveat that any such definition will be coarse,

we can however permit consumers to have more heterogeneous preferences for some products

than others. To do this, I estimate a model identical to that in Section 6.1 for each module in

2017 with two exceptions. First, I introduce an additional scaling parameter which rescales the

utility (net of the logit error) for “new” products relative to existing products, such that

(16) uijsw =

αipjsw + ξjsw + εijsw for old products

ρ(αipjsw + ξjsw) + εijsw for new products

where I define a product as “old” if it was ever in my sample in 2006 and “new” otherwise.43

If stores only sold either all new goods or all old goods, then this form of scaling would be

identical to letting the variance of ε differ across these two types of goods. Because stores

sell a combination of both types of goods, these two models are not equivalent, but they are

quite similar. For large values of ρ, the importance of the logit error in determining demand

for a new product shrinks relative to the vertical characteristic and price. For small ρ, the

logit error becomes increasingly important, meaning consumers are less likely to substitute

away from that product in response to price increases. Thus, the hypothesis of the simple

model is that ρ < 1. The second deviation from Section 6.1 is that I only include UPC and

store fixed effects separately (rather than UPC-store fixed effects). I do this because I find

in practice that including store-UPC fixed effects tends to make the search procedure behave

much more poorly and make the results less robust to changes in sample size. I am forced by

time and computational constraints to draw a random sample of 1,000 stores for each module

and estimate the model using only these samples. Estimates with this reduced number of fixed

effects appear to be robust to drawing alternative samples.

I present the results of this estimation procedure in Table 6. I find that in all modules except

for Remaining Fruit the estimated value of ρ is statistically significantly less than 1, meaning

that demand for newer products is more dependent on logit errors (i.e. preference heterogeneity)

than is demand for older products. This is consistent with the model, which predicted that

newer products would be more niche than older products and thus that consumers would be

43One may wonder why I introduce ρ instead of directly permitting the variance of ε to vary across products.
This is because the standard logit form (which describes the maximum among symmetric logit draws) fails
to hold when the scale of ε differs across products, making the estimation of such a model significantly more
complicated.
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less sensitive to price changes in the former. The extent to which these newer products are

more niche varies substantially by category. In Light Beer, ρ̂ is much smaller than 1, implying

that consumers of new light beers are less than half as sensitive to price changes as consumers

of older beers.44

Table 6: Estimates of Scaling Parameter for Newer Products

ρ ᾱ σα
Fruit Drinks 0.92 -0.63 1.04

(0.02) (0.01) (0.03)
Soup 0.92 -0.69 1.23

(0.01) (0) (0.01)
Cookies 0.98 -0.5 1.24

(0.01) (0.01) (0.03)
Pizza 0.93 -0.48 3.63

(0.03) (0.01) (0.21)
Ice Cream 0.67 -0.53 2.02

(0.02) (0.01) (0.05)
Entrees 0.82 -0.18 1.02

(0.02) (0.01) (0.05)
Yogurt 0.79 0.08 4.12

(0.02) (0.02) (0.12)
Remaining Fruit 1.08 -0.36 1.17

(0.04) (0.01) (0.05)
Light Beer 0.34 -0.25 0.45

(0.01) (0) (0.01)

Note: Estimates of utility parameters and rescaling parameter for each module. The parameter ρ is an estimate
of the rescaling parameter which multiplies “new” products, defined as products (i.e. UPCs) which were not
sold in 2006 in my data.

8.3 Vertical Differentiation

Finally, one may wonder whether vertical differentiation can explain the changing sub-

stitution patterns presented herein. If increasingly efficient supply chains have reduced firms’

marginal costs significantly, some firms may have invested in higher quality goods which were

44One concern with these estimates is that σα is very large relative to ᾱ, implying that a large number of
price coefficients are positive. I have also estimated models for some categories in which αi is distributed as a
log normal random variable. Though the search procedure in this model is more likely to generate numerical
issues, estimates are similar when models converge. Estimates from such a model are presented in Table A.4.
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too expensive in the past. To address this possibility, I briefly summarize the extent to which

the quality of newer goods differs from that of existing goods in Figure 14. In this figure, I plot

the distribution of product fixed effects (which are estimated in the store-level logit regressions

in Equation 14) for new and old/existing products in 2017. I define “new” slightly differently

here. Rather than specifying a UPC as being “new” depending on whether it was ever sold

in 2006, I call a product “new” if a that product was not sold in a given store in 2006. This

definition allows us to quantify the extent to which newer goods in each store are preferred

on average by the consumers in that store, without constraining average preferences (or the

variance of logit errors) to be identical across stores.

Using this definition, I plot the full distribution of estimated fixed effects for “existing”

(black, solid) and “new” (blue, dashed) products. Unlike in many of the preceding figures, the

differences between the distributions in 2006 and 2017 are generally small. Consistent with

Bronnenberg and Ellickson (2015), who comment that “the supply and availability of fresh

products and the diversity and quality of products on offer” have improved, I find the most

significant increase in this vertical characteristic to be in the subcategory of fruits in my sample

(subfigure (h)). This also helps make sense of the fact that price elasticities have declined in

this category even while newer products are less niche (according to Table 6). The other most

notable differences are in the Soup, Yogurt, and Frozen Pizza categories, all of which appear to

indicate that newer products rank slightly lower on vertical dimensions than newer. In general,

these changes are small, bolstering the notion that horizontal differentiation has played the

dominant role in rising differentiation.

9 Concluding Remarks

In this paper I have shown that, for many popular goods in food stores and mass merchan-

disers, consumers have become significantly less price sensitive over the past decade. I offer one

explanation for this trend, that retailers have changed the assortment of products they offer in

order to sustain larger markups. This finding relates to a growing literature which finds that

profit rates, and markups in particular, have risen among many firms in the United States in

recent decades (De Loecker, Eeckhout and Unger, 2020). What is perhaps most novel here is

that the explanation I offer is entirely within firm. Even in the absence of changes in market

or monopsony power, retailers may have been able to sustain large markups because the types

of technological advances they have experienced have allowed them to offer more differentiated

goods. Moreover, markups induced by this mechanism can in principle be welfare enhancing.
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Figure 14: Distributions of Quality of New and Existing Products, by Module
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Note: Plotted are the distributions of product fixed effects in 2017 from the store-level logit model in Equation
14. Estimates of fixed effects of existing products are in black (solid) and those from new products are in blue
(dashed).

Prices have moved little while consumers have become able to find products for which they

have a high willingness to pay, meaning both producer and consumer surplus may have risen.

My results are also consistent with recent evidence that the number of products households

purchase in a given category has declined over time (Neiman and Vavra, 2019).

The strongest evidence I present here demonstrates that own- and cross-price elasticities

have declined significantly between 2006 and 2017. These results are robust across nine product

modules, which cover thousands of products sold in 5,000-10,000 stores (differing by module)

across the country. In models with geographically heterogeneous preferences I show that the
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disutility of price has declined significantly in many markets, meaning that the observed changes

in substitution patterns are in part due to changing preferences (broadly defined). The results

also hold when I estimate more than 100,000 store-level constant elasticity demand curves,

which make strong assumptions about cross-product substitution but which are robust to mis-

specification of market sizes.

I then show that these changes are broadly consistent with the simple model in which

the decline of stocking costs incentivizes firms to offer goods for which consumers have more

heterogeneous preferences, which I call “niche” products. I do this by providing evidence for

two predictions of the model, namely that the average variance of preferences for products

in 2017 is larger than that in 2006, and in particular that newer products in 2017 are more

niche than older products. I demonstrate the former via a counterfactual in which I eliminate

the role of rising preference heterogeneity, and the latter by estimating a model which permits

the effective “nicheness” to vary across products by rescaling the importance of idiosyncratic

(horizontal) preferences relative to the utility derived from price and quality.
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A Omitted Figures and Tables

Table A.1: Changing Brand Structure and Characteristics

2006 2017
Flavored Products 239885 188499
Unique Flavors 14378 29744
Organic 3518 16311

Note: Constructed from products files provided by Nielsen. Flavors are defined by Nielsen’s unique flavor codes,
and products are counted as “organic” if they are marked as having a USDA seal indicating the product is
organic.

Table A.2: Correlation Between FRAC Estimates Across Modules, 2006 and 2017

2006 Fruit Drinks Soup Cookies Pizza Ice Cream Entrees Yogurt Fruit

Fruit Drinks
Soup 0.26
Cookies 0.55 0.14
Pizza 0.53 0.19 0.49
Ice Cream 0.35 0.33 0.34 0.45
Entrees 0.38 0.49 0.42 0.5 0.5
Yogurt 0.29 0.41 0.32 0.35 0.41 0.41
Remaining Fruit 0.28 0.39 0.49 0.48 0.11 0.51 0.27
Light Beer 0.34 0.46 0.35 0.36 0.08 0.28 0.18 0.53
2017

Fruit Drinks
Soup 0.39
Cookies 0.24 0.31
Pizza 0.42 0.57 0.4
Ice Cream 0.27 0.05 0.35 0.24
Entrees 0.26 0.39 0.47 0.53 0.44
Yogurt 0.05 0.03 0.37 0.14 0.05 0.12
Remaining Fruit 0.23 -0.02 0.17 -0.06 0.13 0.03 0.23
Light Beer 0.34 0.23 0.25 0.33 0.3 0.27 -0.04 0.08

Note: Correlation matrix of all estimates of the mean coefficient on price in consumer utility functions (ᾱ) in

2006 and 2017.
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Table A.3: Estimated Price Elasticities by Year, Constant Elasticity

2006 2017
Estimates Post-Shrinkage Estimates Post-Shrinkage

Mean -1.87 -1.94 -1.54 -1.56
5% -3.99 -3.74 -3.11 -3.02
25% -2.74 -2.66 -2.05 -1.99
Median -1.97 -1.97 -1.49 -1.48
75% -0.92 -1.15 -0.93 -1.03
95% 0.24 -0.12 -0.22 -0.42

Note: Distribution of estimated and post-shrinkage (empirical Bayes) estimates of price elasticities ηs in 2006
and 2017, estimated in the constant elasticity model in Equation 11.

Table A.4: Estimates of Scaling Parameter with Log-Normal Preferences

ρ
Fruit Drinks

Soup 0.88
(0.04)

Cookies∗ 0.93
(0.14)

Pizza∗ 0.77
(0.04)

Ice Cream 0.90
(0.10)

Entrees∗ 0.75
(0.06)

Yogurt

Remaining Fruit 1.07
(0.04)

Light Beer 0.61
(0.02)

Note: Estimates of scaling parameter ρ from Equation 16, with αi distributed according to a log normal
distribution which is constrained to be negative. Modules with asterisks were estimated using 200 randomly
sampled stores; otherwise, 400 stores were used. The estimation procedures for Fruit Drinks and Yogurt do not
converge and often yield numerical issues.
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Figure A.1: Own Elasticity Distribution, Additional Modules
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Note: Distribution of estimated own-price elasticities. Estimates come from store-level logit models in each
module in each year.
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Figure A.2: Coefficients of Variation Within Module, 2006 and 2017
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Note: Constructed from scanner files in Nielsen. Figure (a) presents the estimated kernel density of coefficients
of variation within a store-module in the first week of 2006 (black, solid) and 2017 (red, dashed). Figure (b)
presents empirical cumulative distribution functions.

Figure A.3: Own-Price Elasticity Distribution, Nested Logit, Light Beer
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Note: Estimated own-price elasticities in 2006 and 2017 for the Light Beer module. Estimates are from a nested
logit model estimated separately in each year with UPC and week fixed effects.
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Figure A.4: Average Cross-Price Elasticity Distribution, Nested Logit, Light Beer
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Note: Estimated average cross-price elasticities in 2006 and 2017 for the Light Beer module. Estimates are from
a nested logit model estimated separately in each year with UPC and week fixed effects.
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Figure A.5: Distributions of the Number of Products Sold, by Module
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Note: Plotted are the distributions (across stores) of the number of products in my sample sold in the first week
of 2006 (black, solid) and 2017 (blue, dashed).
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Figure A.6: Distributions of Mean Own-Price Elasticities by UPC, BLP
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Note: Plotted are the distributions (across UPCs) of average own-price elasticities in 2006 (black, solid) and
2017 (blue, dashed) implied by estimates of the BLP-style model.
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Figure A.7: Distributions of Optimal Markups by Module, BLP Estimates
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Note: Plotted are the distributions of markups in 2006 (black, solid) and 2017 (blue, dashed) according to BLP
estimates, conditioning on estimates with positive implied marginal costs and trimming the top and bottom five
percent of the distributions.
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Figure A.8: Distributions of Mean Own-Price Elasticities by UPC, FRAC
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Note: Plotted are the full distributions (across UPCs) of average own-price elasticities in 2006 (black, solid)
and 2017 (blue, dashed) implied by FRAC estimates of demand.
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Figure A.9: Distribution of Estimates of ZIP Code-Level Price Coefficients, Instrumenting for Price

(a) Fruit Drinks (b) Soup (c) Cookies

(d) Pizza (e) Ice Cream (f) Entrees

(g) Yogurt (h) Remaining Fruit (i) Light Beer

Note: Plotted are the distributions of mean preferences for price in 2006 (black, solid) and 2017 (blue, dashed)
in each module, estimated by FRAC. The bottom 10% of estimates in each module-year are excluded from these
figures and only ZIP codes with at least 500 observations are included. In contrast to the main estimates in
the paper, these estimates instrument for pjt at a given store using the average price of good j in week t at all
other stores within a three-digit ZIP code. This instrument serves as cost-shifter under the assumptions that
the marginal costs associated with a given UPC are similar in nearby stores and that demand shocks (net of
absorbed fixed effects) are uncorrelated across stores.

64



Figure A.10: Distributions of the Store-Level Price Elasticities, by Module
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Note: Plotted are the distributions (across stores) of estimated price elasticities (ηs) in the constant elasticity
demand model. Estimates from 2006 are in black (solid) and those from 2017 are in blue (dashed).
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Figure A.11: Distributions of Price Elasticities (Constant Elasticity), Controlling for Competing Prices
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Note: Figure (a) presents the distribution of estimates of ηs, the store-module-level price elasticity estimated
from regressions of the form log(sjsw) = ηslog(pjsw) + βslog(p̄−jt) + ξ̄js + ∆ξjsw, where the term p̄−jt is the
average price of other goods within a store-module-week and each regression includes UPC fixed effects. Figure
(b) presents the distribution of store-level averages of these estimates (i.e. averaging across the modules offered
by a store).
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Figure A.12: Effects of Increasing Preference Heterogeneity
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Note: Distributions of estimated own-price elasticities in 2006 (black) and 2017 (grey), as well as counterfactual
price elasticities which set preference heterogeneity to 2006 levels (red, dashed). Estimates come from logit
models estimated at the store-module-year level (Equation 14).
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B Selecting Product Categories

As described in the text, in order to exclude any product categories in which consumers

exhibit sales targeting behavior, I conduct a test for many product modules which draws on

the arguments in Hendel and Nevo (2006): if consumers are unable to store goods, then the

amount purchased on one trip to the store should not predict the time until the next trip. The

goal here is to test the null hypothesis that consumers are not storing goods, and to restrict my

sample to modules for which I cannot reject the null. As I observe nearly every trip taken by

the households in the Homescan data, we can do so by testing whether the quantity purchased

on a given date predicts the amount of time which passes before a consumer purchases again.

To be precise, I run the following regression separately for 40 modules in 2006:

(17) Time Sinceit = f(pit) + βqit−1 + θh + δj + ηit

where Time Since is the number of days since the most recent purchase before trip t by consumer

i in a given module.45 In this regression pit and qit−1 are current price paid and previous quantity

purchased, and θh and δj are household and product fixed effects respectively.46 The coefficient

β is the focus of the test, and the null hypothesis is that β = 0. Household fixed effects are

necessary here because some households may consistently purchase higher quantities. Product

fixed effects control for product size and whether or not the product is a pack of multiple smaller

units. Without these fixed effects, consumers switching between 6- and 12-packs of sodas (for

example) could bias estimates of β. Finally, I instrument for qit−1 with pit−1, which links the

regression to the thought experiment more directly: if additional units purchased previously as

a result of a sale increase the time until a household purchases again, then consumers may be

storing goods and targeting sales.

Consistent with intuition, the modules selected in this paper tend to be either perishable

(e.g. Yogurt) and/or not easily stored in large quantities as other modules (e.g. Frozen Pizza).

However, two points should be emphasized. First, the test above is for storage and sales

targeting behavior, not for whether or not a good is perishable. Soup, which is included in

my sample, can be stored for months in a pantry. What this test implies is that consumers

are unlikely to purchase additional units of soup in response to a sale, or to avoid purchasing

45Before running these regressions, I restrict the sample to trips (1) which were the only trip taken by that
household on a given day, and (2) in which the household bought only one product within the module of interest.
These are necessary to make qit−1 well-defined and to make Time Since measurable (as I only observe the day
of any given trip).

46I specify f(·) as a cubic function of price.
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by consuming from an inventory at home. Second, although I argue that this test is one

reasonable way to reduce the number of products to be studied, I do not claim that this is

necessarily crucial to my results which follow. Even if consumers maintain inventories, most

of the questions of interest here about changes in substitution patterns over time. As long as

consumers target sales and store inventories at the same rate in 2006 and 2017, my conclusions

will be unaffected.47 The full set of p-values for all candidate modules are in Table B.1.

C Panel of Yogurt Data

In this section I restrict my focus to Refrigerated Yogurt, in order to demonstrate that the

results in the paper have been happening gradually over time. If data from 2017 or 2006 were

anomalous, we might worry that the results in the paper cannot be related to growing selection

within stores, which has been gradual over time. As a separate issue, one may also worry that

although I use deflated 2017 (i.e. real) prices throughout the paper, nominal prices are more

relevant for demand estimation.

Including data from intermediate years will shed light on these concerns. For the results in

this section, I use data from the first 6 weeks of 2006, 2008, 2010, 2013, 2015, and 2017. I begin

by estimating a single logit model in each year, under four specifications: (1) all stores, and

no controls, (2) only stores which are present in all years of the panel, (3) the same restricted

sample, plus store-UPC and store-week fixed effects, and (4) the same as (3) but using nominal

prices only. I plot the estimates of the coefficient on price over this panel in Figure C.1.

Standard errors (clustered at the store-year level) on these estimates are also included in the

graph, though they are generally small enough to be hidden by the marker. Each of these

estimates indicates a trend in the price coefficient over time. Adding fixed effects naturally

changes the price coefficient significantly, but restricting to a balanced panel of stores and

using nominal prices has minimal impact.

Next, I estimate a logit model for every store in every year with more than 250 observations

in a given year (most stores with fewer observations are dropped anyway when absorbing fixed

effects). I include UPC and week fixed effects in every regression. Unlike in the main text, I do

not restrict these estimates to stores which generate a balanced panel. This amounts to nearly

60,000 separate logit estimates in total over the panel, from which I present two results. First, in

Figure C.2 I plot the mean, 25th, and 75th percentiles of the distribution of own-price elasticities

47Although the story I am most concerned about predicts that β > 0, in practice many estimates are negative.
As this still implies that past purchases predict future behavior (albeit in a more complicated story), I treat

these categories identically to those with β̂ > 0.
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Table B.1: Results of All Tests for Inventory Behavior

Module Description p-value N
FRUIT- ORANGE- OTHER CONTAINER < 0.001 189210
FRUIT DRINKS - OTHER CONTAINER 0.991 84271
BABY MILK AND MILK FLAVORING 0.217 4223
SOUP-CANNED 0.644 98075
CAT FOOD- WET TYPE 0.015 26209
DOG FOOD - DRY TYPE < 0.001 58268
SNACKS - TORTILLA CHIPS 0.107 107960
CEREAL - READY TO EAT < 0.001 188801
COOKIES 0.993 197003
GROUND AND WHOLE BEAN COFFEE < 0.001 101399
SOFT DRINKS - CARBONATED < 0.001 132651
WATER- BOTTLED 0.110 68437
CANDY- CHOCOLATE 0.015 158994
CANDY - NON-CHOCOLATE 0.010 107560
SOFT DRINKS - LOW CALORIE 0.001 119141
ENTREES- ITALIAN-1 FROOD - FROZEN 0.010 44622
PIZZA - FROZEN 0.972 74221
ICE CREAM - BULK 0.675 142015
FROZEN NOVELTIES 0.177 79076
LUNCHMEAT - SLICED-REFRIGERATED 0.164 105761
FRANKFURTERS - REFRIGERATED < 0.001 83761
BACON- REFRIGERATED < 0.001 108521
ENTREES - REFRIGERATED 0.576 43736
CHEESE- SHREDDED < 0.001 100283
YOGURT - REFRIGERATED 0.808 92011
LUNCHMEAT - DELI POUCHES - REFRIGERATED 0.045 53413
DAIRY-MILK-REFRIGERATED 0.002 764194
BAKERY-CAKES-FRESH 0.056 82168
EGGS-FRESH < 0.001 365468
FRESH FRUIT - REMAINING 0.515 63883
BEER 0.052 15945
LIGHT BEER (LOW CALORIE/ALCOHOL) 0.742 13344
DETERGENTS -HEAVY DUTY- LIQUID < 0.001 97923
BLEACH-LIQUID/GEL 0.005 32798
TOILET TISSUE < 0.001 184531
PAPER TOWELS < 0.001 126729
BATTERIES < 0.001 56657
ANTACIDS < 0.001 22113
PAIN REMEDIES - HEADACHE < 0.001 52689
COLD REMEDIES - ADULT < 0.001 33085
DISPOSABLE DIAPERS < 0.001 18024

Note: Reported are p-values for the test of the null hypothesis that β = 0 and sample sizes in estimating
Equation 17 for each module. Categories come from Table 2b of the Online Appendix of DellaVigna and
Gentzkow (2019), which lists many of the highest revenue products in the Nielsen data.

70



for each year of the panel. Although the trend here is not perfect (e.g. the decline between 2010

and 2013), the hypothesis that either of the end years is anomalous seems unlikely. The mean

in 2008 is substantially higher than that in 2006, the mean in 2010 is higher still, and the mean

in 2017 is the most positive of the sample. Given potentially many changes in this sample,

e.g. the rise of greek yogurt and the complicated price responses which may have occurred,

this figure is strong evidence of a trend. Second, in Figure C.3 I plot the same moments of the

distribution of estimated utility coefficients on price over time. Here the trend is even more

clear. Except for the slight decline at the mean in 2013, the average estimated coefficient has

increased steadily over time.

Figure C.1: Utility Coefficients on Price Over Time, Refrigerated Yogurt
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Note: Estimated coefficients on price from four simple logit models: (circle) all stores in each year, and no
controls, (square) only stores which are present in all years of the panel, (plus) the same restricted sample, plus
store-UPC and store-week fixed effects, and (diamond) the same as (plus) but using nominal prices only.
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Figure C.2: Own Price Elasticity Distribution by Year, Refrigerated Yogurt
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Note: Mean and interquartile range of own-price elasticities for Refrigerated Yogurt for selected years between
2006 and 2017.

Figure C.3: Store-Level Utility Coefficients Over Time, Refrigerated Yogurt
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Note: Mean and interquartile range of estimated price coefficients for Refrigerated Yogurt in store-level logit
models.
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