
Nonparametric Demand Estimation with Many
Products: Microfoundations and Simulations

James Brand∗

May 15, 2022

Abstract

In this note I argue for the use of simple machine learning tools to learn
key features of consumer demand prior to nonparametric estimation. In par-
ticular, I propose the “hierarchical lasso” (Bien, Taylor and Tibshirani, 2013)
to select relevant substitutes for each product. Implementing this approach
solves three problems. First, it reduces one researcher degree of freedom in
demand estimation (namely the choice of “nests”). Second, relative to the ba-
sic lasso/elastic net, this approach imposes a natural constraint on the non-zero
coefficients which makes the resulting selected model more easily interpretable
when demand functions are nonlinear. Finally, this solves a curse of dimension-
ality in nonparametric demand estimation (Compiani, 2021), thereby permitting
the use of nonparametric estimation methods in settings with potentially many
products. The argument here is implemented in the in-progress Julia package
NPDemand.jl, and a number of simulations are presented using this package to
demonstrate that the proposed approach performs well in complicated settings
and under some forms of misspecification.
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1 Introduction

The estimation of structural models of consumer demand has been a central fo-
cus of the IO literature for decades. Of particular interest are own- and cross price
elasticities, as common counterfactuals involving firm pricing or profitability depend
directly on these objects. An important practical question is how best to estimate the
Jacobian of demand with respect to price. With J goods, the full Jacobian is a J × J
matrix of derivatives, each of which is a function of all J prices, making this a com-
plicated object to flexibly estimate in practical samples. The fundamental tension is
between parsimony and flexibility. Popular models like nested and mixed logits make
strong behavioral assumptions in order to reduce the problem to the estimation of
an often small number of structural utility parameters (Berry, 1994; Berry, Levinsohn
and Pakes, 1995). More flexible approaches, for example the nonparametric estimator
introduced by Compiani (2021), relax these behavioral assumptions but introduce a
curse of dimensionality which is often insurmountable in settings with many products.

One natural middle ground between these extremes is to allow for preferences
for some sets of products to be correlated, even after conditioning on all product
characteristics observed by the econometrician. This is commonly incorporated into
empirical models by grouping products into disjoint “nests” prior to estimation, in
a way which often reflects the available data and the researcher’s priors. Because
the predicted demand for each product, as well as the substitution patterns between
products, depend directly on the structure of these nests,1 these often-ignored choices
can have substantive effects on the model’s estimates. Moreover, many counterfactuals
of interest depend on estimates of first and second derivatives of the aggregate demand
function, which themselves depend on the specified model of demand (Mrázová and
Neary, 2017).

In this note I outline what I call a fully nested demand model, which is a nested
utility model in which groups of products are so segmented that all inter-group cross-
price elasticities are zero. One example of such a model would be one in which, at each
purchase event, consumers have strict preferences for types of liquor which imply zero
substitution between whiskey and tequila for a wide range of prices. I then propose a
two-stage estimation procedure in which I first select the relevant substitutes for each
product and then estimate the implied demand system. This selection procedure is
applied to each product separately, meaning that the substitution patterns it selects
need not be symmetric (as is the case, for example, in some models of inattentive
consumers), though symmetry can be easily enforced.

This note contributes to the literature concerning flexible demand estimation on
a number of fronts. Researchers face many difficult practical choices in modeling and
estimating demand. The foremost goal of this paper is to develop a procedure for these
steps which is (1) data-driven, (2) applicable to a large number of settings, and (3)

1See e.g. equation (5) in Grigolon and Verboven (2014)
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easy to implement. On (1), in most existing methods, researchers who estimate nested
(mixed) logit models must provide the algorithm with predetermined non-overlapping
nests. Although there is new work being done in this direction, this paper is among
the first to introduce data-driven methods of determining the appropriate nests for
a nested logit model or for verifying whether nests are indeed non-overlapping. As
I show in simple simulations, the proposed procedure appears to identify the correct
nests with high probability.

On (2), as discussed in Compiani (2021), the parametric restrictions researchers
make regarding consumer preference heterogeneity while estimating mixed logit mod-
els can have substantive impacts on the resulting model estimates. Examples include
the distribution of preferences for price, which are often assumed to be normal, and
the common assumption that idiosyncratic preferences follow a Type 1 Extreme Value
distribution (for which the variance is identical across products). By focusing on non-
parametric estimation of the selected model of demand, we avoid many of these issues.
Finally, I have written the Julia package NPDemand.jl to accomplish goal (3). This
package can be called from Julia, R, or Python (the latter two through existing tools
for cross-language communication), and the methods for model selection and demand
estimation are straightforward and simple for users to implement. Because the model
selection approach I take is a constrained lasso regression, this step is relatively quick
even when cross-validating the relevant regularization parameters. Similarly, because
the nonparametric estimator in Compiani (2021) is, in its simplest form, a two-stage
least squares estimate, estimation is quick and computationally cheap as long as the
selected nests are not too large. This package is thus a quick and easy way to gen-
erate baseline or supplemental estimates of consumer demand in research or industry
settings.

There is already a growing body of work which combines machine learning tools
with traditional demand estimation. Gillen, Shum and Moon (2014) estimate a model
much like that of Berry, Levinsohn and Pakes (1995), and focus on settings in which
the number of product characteristics is large. Extending this work, Gillen et al.
(2018) make use of the linearity of the log of market shares in a logit model and
include model selection in the first and second stages of an IV model, followed by
a post-selection estimation of the selected model in the spirit of Belloni et al. (2012).
Contemporary work has also begun to focus on identifying relevant close substitutes for
products in markets with many options by applying machine learning tools to nested
logit models or generalizations thereof. The approach here is complimentary to this
existing work. Conducting model selection separately for each product’s nonparametric
demand function, as is done here, is appealing for its ease of implementation and
because it can draw on a large body of work using regularized regressions for model
selection. However, methods which make use of the mixed and nested logit structure
during model selection may be more efficient as well as more easily interpreted. These
approaches also provide estimates of utility parameters, which may be important for
some empirical questions or counterfactuals.
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I run a series of simulations to evaluate the performance of, the proposed approach.
I consider cases in which the demand for two groups of products is independent, and
the econometrician has data on all products but does not know which are relevant
substitutes for others. First, I show that the selection procedure I propose consistently
selects only the relevant substitutes for each product in a simple case for which the
proposed model is correctly specified. I then conduct a series of more complicated sim-
ulations demonstrating that this procedure is robust to some forms of misspecification.
In these simulations, I show that the combination of model selection, a violation of an
assumed index structure, and purposefully mis-selected nests appears to generate little
to no bias in estimates of own-price elasticities.

2 Fully Nested Discrete Choice

2.1 Model

In this section I discuss a simple random utility model in which consumers have
strong preferences for small groups of products, meaning they ignore the attributes
of all products outside of their preferred group. I call this model a fully nested de-
mand model, because it can be thought of as a typical nested logit model with two
modifications: preference heterogeneity for inside options have bounded support, and
group-level shocks are large relative to differences in characteristics across products.
This structure “fully” nests each product, in the sense that all substitution will be
within-nest and to the outside option.

In each market t, let there be J products, each of which falls into one of G non-
overlapping groups.2 Products are assumed to be differentiated by prices pt and an
unobservable characteristic ξt, each a vector with J entries. Let χt = (pt, ξt) be an
element of the characteristic space X .3 Let the indirect utility received by consumer i
from product j in group g be

(1) uijt = f(δjt(pjt, ξjt)) + λig + εijt

and the utility of the outside good be ui0t = εi0t. I emphasize in Equation 1 that each
unobservable component of utility can depend on some observables, but suppress that
notation for most of the remainder of the discussion (though these functional depen-
dences are permitted throughout). Although I do not include any observable product
characteristics other than price, other characteristics can be incorporated easily, and
any characteristics which are fixed across markets (e.g. flavor, size, etc) are already
permitted in Equation 1 via either product-specific constants in δ(·) or group-level
effects in λig.

2The latter is simply for exposition; in a nonparametric setting, groups of products can overlap.
This may be relevant, for example, if a diet sodas are substitutes for the non-diet version of the same
soda and for other diet sodas but not for the non-diet version of competing sodas.

3I assume throughout that the characteristic space X is a Cartesian product.
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The first term of Equation 1 (δjt) is the mean utility of product j in market t,
which is shared by all consumers in market t. The second term λig is a group-level
shock, the distribution of which can depend on group characteristics (fixed across mar-
kets), and which shifts all products in a group homogeneously within consumer. The
residual term εijt represents all remaining preference heterogeneity (which can depend
on prices). In a traditional mixed logit model, δjt represents the mean preferences
for all product characteristics, and ε includes the logit error as well as all preference
heterogeneity which is correlated with product characteristics. Equation 1 is far more
general, encompassing the nested logit, probit, and most other common random utility
models. I now make three restrictions on the unobservables in this model

Assumption 1. (i) For all i, for some gi, for all g′i 6= gi,

λigi − λig′i > max
j∈gi,j′∈g′i

max
χt∈Xt

[f(δj′t)− f(δjt) + εij′t − εijt]

(ii) supp(εi0) = R for all i

(iii) The index δjt is linear, i.e. δjt ≡ pjt + ξjt, and f(·) is strictly monotonically
increasing.

These modeling assumptions are, at face value, high-level distributional restric-
tions on the unobservables λ, δ and ε, but they capture a simple intuitive structure
which is of empirical interest. If Assumption 1(i) holds then each consumer i will al-
ways choose a product in the corresponding group gi of products under consideration
(which varies by consumer). Further, because this inequality holds for all χt ∈ X ,
changes in the characteristics of goods not in group g have no effect on the demand for
goods in group g, because they do not induce any consumers to change their purchasing
behavior.4 This generates what is a the core feature of the model: under Assumption
1, each good only substitutes for relatively few others on the margin.5 Note that I do
not assume that the number or composition of groups G are known, so this is quite
general. The biggest limitation of this assumption is that it requires that the groups
do not differ by market.

A model which satisfies Assumption 1(i) and in which the distribution of prefer-
ences εi0 for the outside option is very small (e.g. a point mass at zero) is one in which
each group of products does not strictly substitute to any other good in the model.
In such a restricted model, it is unclear why products in different groups should be

4This inequality does not need to hold for all χt ∈ X . Rather, it needs to hold within the subset
of X which contains the researcher’s data and any counterfactuals she wishes to run. Thus, one does
not need to assume (counterintuitively) that consumers would be unresponsive to extreme changes in
the prices of products outside group g (e.g. zero prices).

5One could generate this pattern alternatively by assuming that there exist a limited number of
non-overlapping consideration sets and that each consumer’s consideration set is constant over time.
Without additional restrictions, such a model would generate identical predictions to those herein.
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included in the same model at all. In order to exclude this unintuitive setting, and for
other reasons which will be elaborated below, Assumption 1(ii) requires that the utility
of the outside option have full support on the real line. Thus, any marginal change in
a good’s characteristics can induce switching to or from the outside option, regardless
of λig or any product characteristics. Finally, Assumption 1(iii) is an index restriction
common in this literature dating back to Berry (1994). In a traditional logit model
in which the variance of utility shocks is left unspecified, researchers often normalize
the coefficient on one product characteristic to 1. This assumptions serves a similar
purpose here, effectively normalizing the scale of the unobservable ξ to that of prices
pjt. I assume for ease of notation that ξ enters δ linearly, though all that is necessary
for identification is that δjt is monotonic in ξjt.

I have assumed so far that groups partition the set of products, meaning that
all groups are non-overlapping. This is an expositional tool to demonstrate a simple
case which is sufficient to generate the aggregate model of interest, and is not neces-
sary for identification or in estimation. In other words, substitution patterns may be
asymmetric, such as in a model with a leading brand which affects demand for smaller
competitors (e.g. because its price is salient to consumers) but which is unaffected
by each small firm’s prices.6 All that is required in principle is that the demand for
any product depends on the characteristics of relatively few (i.e. less than five or
ten) other products and that consumers agree on these groups. What the previous
subsection highlights is that this condition can be thought of as requiring that across-
group preference heterogeneity is sufficiently larger than product- or consumer-specific
heterogeneity.

2.2 Realism of Fully Nested Demand

Although many empirical papers have applied the nested logit model, the reader
may be concerned as to the realism of the previous model of fully nested demand.
Though the models are similar in spirit, the nested logit model permits substitution
between all products in a demand system, whereas fully nested demand explicitly does
not. There are three reasons I view this as a reasonable restriction. First, empirically,
estimates of many cross-price elasticities in large demand systems, and especially those
for products in different intuitive subsets, tend to be very small. Berry, Levinsohn
and Pakes (1995), who study the market for automobiles in the U.S., estimate that a
$1000 increase in the price of a Nissan Sentra increases the market share of the Honda
Accord by 2.5% and of the Ford Escort by 8.2%, but has a negligible effect on the
demand for the BMW or Lincoln models considered. In the market for cereal, Nevo
(2001) estimates cross-price elasticities that range from 0.02 to more than 0.3. Thus,
even before considering nested logit models explicitly, there is evidence that other

6Abaluck and Adams (2018) have shown that asymmetries in the Jacobian of demand are informa-
tive of consumers’ consideration sets. This intuition applies here as well under additional assumptions
on the similarity of the distributions of εij across different products.
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components of product differentiation make some cross-price elasticities very small.

More recently, Miravete, Seim and Thurk (2018) estimate demand for liquor in
Pennsylvania in a random coefficient nested logit model and find that within-nest cross-
price elasticities are between 3 and 30 times larger than across-nest elasticities. Miller
and Seo (2018), in studying the substitution between alcohol and marijuana, estimate
that the cross-price elasticities between beer, wine, and liquor are between 0.001 and
0.11, and cannot reject that any of these elasticities are zero at the 95% level. In a
study of automobile taxes in Brazil, Chaves (2019) presents estimates of some cross-
price elasticities which are as large as 0.8 and others which are smaller than 10−3. Thus,
some products are far more relevant determinants of the demand for others. Even if
these small cross-elasticities are not exactly zero, which is difficult or impossible to
test, the loss from ignoring them may be quite small.

Second, though the nested logit model can be quite flexible, there are well-known
restrictions on the substitution patterns it can rationalize. For example, one could say
that the nested logit “permits” substitution between all products, but it also requires
it via the full support of the logit distribution. Even the least desirable high-price,
low-quality products will be chosen by each consumer with positive probability. The
nonparametric approach is appealing in this sense, as Compiani (2021) provides exam-
ples of demand systems which do not fit the standard multinomial logit (nor nested
logit) framework but which do satisfy his assumptions. If these small estimated cross-
price elasticities represent true zeros, then logit and nested logit models may be too
restrictive by assuming substitutability between products that are in fact fully seg-
mented.

Third, there are a variety of existing models which have a similar flavor as the
simple choice model presented here. Tversky (1972)’s elimintation by aspects, which
models choice as a sequential process of elimination of irrelevant products, is particu-
larly similar. In fact, Train (2009) mentions that Tversky’s model is the limit of the
nested logit model as the nesting parameter approaches 1 (which eliminates across-
group substitution). Similarly, Train and Sonnier (2005) consider a mixed logit model
in which the mixing distribution has bounded support. There is also a large marketing
literature which studies consideration sets, i.e. the small subset of products among
many over which the consumer makes an active comparison (e.g. Mehta, Rajiv and
Srinivasan (2003)). Even if consumers’ consideration sets are heterogeneous, as long
as no two possible consideration sets overlap with one another, demand may be fully
nested.

2.3 Aggregation and Inversion

Now we can aggregate the preceding model of individual choice to a model of
market-level demand. Let sjt denote the market share of j in t, and st the vector of

7



market shares for market t. Now define the market-level demand function

(2) σ : X → ∆J

from the characteristic space to the unit simplex in J dimensions. This will be the
object the researcher aims to identify from the data. Because we will not attempt to
identify the distributions of δ, λ, and ε separately, I write σ as a nonparametric function
of product characteristics, i.e. σ(χt) = σ(pt, ξt) = σ(δt), where the second equality
comes from the index assumption above. To understand the properties of market
demand in this setting, consider the probability that consumer i chooses product k:

P (i choose k) = P (uikt ≥ max
j 6=k

uijt)

= P (f(δkt) + λig + εikt > f(δj∗t) + λig∗ + εij∗t)

= P (λig − λig∗ > f(δj∗t)− f(δkt) + εij∗t − εikt)

where j∗ denotes the best alternative to k and g∗ is the group which contains j∗.
Note that this inequality, by Assumption 1, is never satisfied when g 6= g∗, and is
unaffected by changes in the product characteristics. Thus, the derivative of these
choice probabilities, for any two products in different groups, is zero. Because these
inequalities hold for all consumers, market shares clearly inherit this same property.
When j∗ and k are in the same group, the same choice probability becomes

P (uikt ≥ max
j 6=k

uijt) = P (0 > f(δj∗t)− f(δkt) + εij∗t − εikt)

= P (f(δkt) > f(δj∗t) + εij∗t − εikt)

Clearly, under some minor regularity conditions, consumer demand for product k will
be increasing in δk and declining in δj∗t. This brings us to the assumptions we will
require the aggregate demand to satisfy.

Assumption 2. (i) ∂
∂δjt

σk(δt) ≤ 0 for all j > 0, k 6= j and all δt

(ii) For every K ⊂ J and every δt, there exist a k ∈ K and a j /∈ K such that
∂

∂δkt
σj(δt) < 0.

As shown in Berry, Gandhi and Haile (2013), Assumption 2 implies that the
demand function σ (and each component j) is invertible in δt.

7 Given the invertibility
of σ(·) in δt, we can write, for each j,

δjt = σ−1
j (st)

pjt = σ−1
j (st)− ξjt

7We also require that the characteristic space X is a Cartesian product, which is assumed at the
beginning of the previous subsection
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These functions σ−1
j , and functionals thereof, will be our objects of interest for the

remainder of the paper, and our task will be to estimate each using only market-level
data.

3 Implementation in Two Stages
In this section I describe the implementation of the two-step estimation procedure.

In the first step, I select the appropriate model of demand for each product using
some form of penalized regression. Second, I take the model selected in the first
stage as given and apply the method introduced by Compiani (2021) to estimate each
demand function with reasonably few arguments. I discuss these stages in reverse
order, beginning with the estimation of demand conditional on a selected model, and
then discussing the model selection procedure.

3.1 Second Stage: Demand Estimation

First, suppose that we have already selected a model (specifically, the relevant
substitutes for each product). Then, under the selected model, I estimate the demand
function nonparametrically following Compiani (2021) directly. As a result, this section
borrows heavily from that paper’s structure and notation. The researcher is assumed
to have data on prices p and other (exogenous) product characteristics x, as well as
market shares, for J (j) selected products (different for each j) in T markets. Letting
uppercase letters denote the random variables corresponded to lowercase realizations,
I begin with the following assumptions from Compiani (2021)

Assumption 3. E[ξ|Z] = 0 almost surely in Z

Assumption 4. For all functions B(·) with finite expectation, if E[B(S, P )|Z] = 0
almost surely in Z then B(S, P ) = 0 almost surely in (S, P ).

Assumption 3 assumes the availability of an instrument for price, and 4 is a stan-
dard completeness condition in the NPIV literature. See e.g. Newey and Powell (2003)
for details on this assumption. As shown in Compiani (2021), Assumptions 2, 3, and 4
guarantee that the demand function σ is invertible and point-identified. See that paper
for a proof and further discussion. I apply the Compiani (2021) estimation sieve-based
estimation procedure, which comes originally from Chen and Christensen (2018). Our
estimating equation is the product-specific inverse demand function

(3) pjt = σ−1
j (st)− ξjt

Let σ−1 ∈ Σ (σ used to denote all demand functions σj jointly) for some function space
Σ, σ̃(·) denote the sieve analog of σ for a given set of parameters, and let ΣT denote
the sieve space for a given sample size T . As in Compiani (2021), I approximate ΣT as
the product of univariate Bernstein polynomial basis functions, the order of which can
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vary with T and for each product j. Similarly, for a given sample size I approximate
the instrument space by a fully interacted set of univariate Bernstein polynomials in
exogenous variables (X,Z). Let A denote this matrix, and let at denote the row of
A corresponding to market t.8 For each guess of σ̃ I construct instrument-weighted
residuals

(4) rjt(st, pt, zt, σ̃
−1) ≡ (pjt − σ̃−1

j (st))× at(zt)

and solve the quadratic minimization problem9

(5) min
J∑
j=1

[ T∑
t=1

rjt(st, pt, zt; σ̃
−1
j )

]′
(A′A)−

[ T∑
t=1

rjt(st, pt, zt; σ̃
−1
j )

]
Chen and Christensen (2018) show consistency and inference results for the general
case of this estimator, and the appendix of Compiani (2021) contains those results
as applied directly to demand estimation, as well as a discussion of the convenient
properties of Bernstein polynomials.

3.2 Structured Sparsity

As discussed above, the issue with implementing this estimator directly in a setting
with many products is that the number of terms in the sieve σ̃ grow exponentially
quickly. In markets with 10 products, estimating the full demand system can require
estimating more than one million parameters. One route to aiding the search procedure
as the number of parameters increases is to introduce constraints which require some
parameters to be equal (e.g. exchangeability). This is the approach taken by Compiani
(2021), and he demonstrates how to impose these constraints in estimation to reduce
the number of estimated parameters drastically.

An alternative approach to to reducing the dimension of the parameters space is
to impose the following prior, guided by the fully nested demand model above: some
goods are unlikely to ever serve as substitutes for one another. The approach I take to
imposing this prior on the model of demand begins with the inverse demand function:

(6) pjt = σ−1
j (st)− ξjt

Now, our task is to determine which products are the most relevant substitutes for
product j (for each j). Given my preceding arguments that products in many markets

8Note that this matrix, including the order of Bernstein polynomial used to construct it, can differ
for each product. I suppress this in my notation here.

9In the simulations herein, I do not sum over products J . Rather, I solve each problem indepen-
dently. I do this because this saves a significant amount of time (as the solution to this problem at
the product level has a closed form) and because it does not significantly affect the performance of
the estimator at the median in these tests.
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are fully nested, our prior should take the form of a function σ−1 which is a function
of only a subset of competing market shares. Importantly, we want to do this while
still permitting σ−1 to be nonlinear in its arguments.

For this I turn to a recent literature on “structured sparsity.” To understand this
approach, let us begin by considering a simple machine learning procedure like the lasso
(Tibshirani, 1996). Suppose that we are considering a market with two products, and
to apply the lasso to our problem we approximate σ−1

1 (the inverse demand function
for product 1) with a quadratic function:

(7) p1t = β1s1 + β2s2 + β12s1s2 + β11s
2
1 + β22s

2
2 − ξjt

It is possible that this lasso regression results in estimates indicating that β1, β11, and
β12 are nonzero but β2 and β22 are set to zero. In order to make use of this selection
pattern, we are forced to make a choice as to whether the inclusion of β12 implies that
product 2 should be included in the demand function for product 1. We would face
a similar problem if β12 were zero and β22 were not. The safer option in each case is
clearly to include product 2, as we can still estimate zero cross-price elasticities in the
second step of estimation. However, especially when we are attempting to select among
many products, this choice can largely or entirely undo the model selection performed
by lasso.

This problem arises in part because the basic lasso penalty does not impose any
knowledge on the relationships of different coefficients.10 In many situations calling
for shrinkage this is reasonable, but in our context this excludes some important in-
formation. If products 1 and 2 are not substitutes, then β12, β2, and β22 should all be
zero. In other words, we are interested in imposing structure on the sparsity of the
coefficients in Equation 7. Namely, we want to impose one of the following constraints:

• β12 and β22 are nonzero only if β2 is also nonzero.

• β12 is nonzero only if β1 and β2 are nonzero

For this I employ the hierarchical lasso, developed recently by Bien, Taylor and Tib-
shirani (2013) and implemented in the R package hiernet. This approach solves a
lasso-type problem with additional constraints in order to enforce exactly the type of
sparsity we are interested in here. In their framework, Bien, Taylor and Tibshirani
(2013) define strong and weak hierarchy as:

Strong Hierarchy : Θ̂jk 6= 0→ β̂j 6= 0 and β̂k 6= 0

Weak Hierarchy : Θ̂jk 6= 0→ β̂j 6= 0 or β̂k 6= 0

10From a Bayesian perspective, lasso corresponds to a prior that all coefficient are independently
distributed Laplace random variables (Park and Casella, 2008).
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The authors then demonstrate that these constraints can be enforced by solving
the following lasso-type problem (with additional constraints) for each product j:

min
β+,β−,Θ

∑
(pjt − sTt (β+

j + β−j )− 1

2
sTt Θst)

2 + λ1T (β+
j + β−j ) +

λ

2
||Θ||1(8)

s.t. ||Θj||1 ≤ β+
j + β−j

β+
j ≥ 0, β−j ≥ 0

ΘT = Θ

where ||Θ||1 =
∑

j 6=k |Θjk|, and where the final constraint imposing symmetry of Θ
is only imposed under strong hierarchy. This structure incorporates our prior on the
demand system in interesting an intuitive ways. When all inequality constraints are
slack, the solution to this problem is identical to the solution to a lasso regression in
which all pairs of interactions are included. Otherwise, it shrinks interaction terms
relative to linear terms in order to satisfy our desired constraints. This is shown
precisely in Bien, Taylor and Tibshirani (2013).

One complication in our setting here is that market shares st are endogenous. To
minimize the impact of endogeneity on model selection, we can predict st using a vector
of instruments and apply the hiernet procedure to the predicted values ŝt from this first
stage regression. If the purpose of this step were to obtain consistent estimates of a
target parameter, this approach would be similar to the “forbidden regression,” as it
amounts to using fitted values nonlinearly in a second-stage regression. Given that our
intent is instead to determine which products’ demand predicts attributes of competing
goods, the issue is less clear. As I show in simulation exercises, this model selection
step appears to perform well even given the use of the forbidden regression.

I make three more modifications to this procedure in NPDemand.jl. First, I run
hierNet repeatedly on multiple bootstrapped samples for each product, and calculate
the selected set of substitutes by taking the intersection of selected products across
bootstraps. As demonstrated by Bach (2008) for the standard lasso, this procedure
can help to exclude irrelevant substitutes with minimal risk of excluding relevant sub-
stitutes. The user can control the number of bootstrapped samples, and I show in
Section 4 that even a few bootstrapped iterations can significantly improve model se-
lection. Second, I always require that each product’s market share is selected into its
own inverse demand system. It is rare that this restriction is necessary in simulations
and in limited empirical testing, but it is an important catch. Third, I allow for users
to require that if product j is selected as a substitute for product k, then product k
must be a substitute for product j. Note that this restriction is strong in some set-
tings. In a model with inattentive consumers in which one product is considered by all
consumers (e.g. an industry leader), the correct demand model may be one in which
this product enters the demand for all others but where many competing prices do not
affect demand for this leader. However, symmetry of this sort is a natural constraint
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which may be relevant in some applications.

3.3 Inference

Inference on causal estimates after a model selection step are has been explored by
many authors in recent years (e.g. Chernozhukov et al. (2017)). Many of these studies
consider generating a second stage (causal) estimate of a single treatment effect which
is unaffected by the first stage selection. I am not aware of any approaches which
provide uniform or point-wise inference results for an infinite dimensional parameter
after model selection with many instruments and regressors. However, it is intuitive
that if the researcher had a second large sample of data available she could select her
model using the first sample and estimate the selected model using the second. In such
a setting, variation in the data which contributes to incorrect model selection cannot
affect estimates of the selected model. This intuition has been operationalized by many
researchers in the form of sample splitting, in which the researcher splits their data
into two subsets and does exactly this. Athey and Imbens (2016), for example, use
one subsample to construct regression trees and another to estimate treatment effects
in each leaf. This is the perhaps the easiest way to ensure that model selection errors
are independent of post-selection estimation errors, and is the recommended approach
here. To close this section I summarize the approach described herein in Algorithm 1.

4 Simulation Evidence
To study the performance of the proposed approach, I begin with a simple data-

generating process and aim to demonstrate that this approach consistently selects
the relevant substitutes for each product and estimates own-price elasticities without
significant bias. I simulate data from many markets in which, for each product j in
each market t, consumer i receives utility

(9) uijt = αpjt + ξjt + εijt

where α = −0.4, ξjt ∼ N(0, 0.152). Prices are generated by pjt = 2(zjt + ηjt) + ξjt
for η ∼ U(0, 0.1) and zjt ∼ U(0, 1). Thus, by construction, zjt are strong instruments
for pjt and prices are correlated with ξjt. This is quite similar to the model Compiani
(2021) simulates, though I restrict α to be fixed across consumers. I simulate data for
2000 independent markets in this example.

To test the model selection procedure, I generate two groups of products. In the
simplest case, I simulate two groups of products entirely independently, both according
to Equation 9, which is equivalent to the fully nested demand model discussed above.
The model selection procedure here is product-specific, and the results are all with re-
spect to the first simulated product. This simulation procedure has the simplifying but
unrealistic quality that all irrelevant characteristics/products are fully independent of
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Algorithm 1: Nonparametric Model Selection and Demand Estimation

I. Split data (s, p) into training and testing subsamples, (strain, ptrain, ztrain), and
(stest, ptest, ztest)

II. Select the model using the training subsample. For each j,

(a) Predict each endogenous regressor (straint ) using all instruments (ztrain)

(b) Substitute all endogenous variables for predicted values from preceding
step, (ŝtrain)

(c) Estimate a hierarchical lasso regression of ptrain on a polynomial in
(ŝtrain, p̂train) to select model

(d) Apply (c) iteratively on B1 bootstrapped samples and take the intersection
of selected substitutes for each product across bootstraps.

IV. Estimate the selected model using testing data, following Compiani (2021)
(superscripts omitted for readability):

- Searching over σ̃, construct rjt(st, pt, zt, σ̃
−1) ≡ (pjt − σ̃−1

j (st)× at(zt) to

minimize
∑J

j=1

[∑T
t=1 rjt(st, pt, zt; σ̃

−1
j )

]′
(A′A)−

[∑T
t=1 rjt(st, pt, zt; σ̃

−1
j )

]
V. (Inference) Draw B2 bootstrapped samples from the testing data and

re-estimate σj on each bootstrap sample to construct confidence intervals,
taking the selected model as given.
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all relevant ξ, which is unlikely to be the case in oligopolistic settings. I have also con-
sidered cases in which some irrelevant characteristics are correlated with unobservables
(ξ) of relevant products. These will be included in future drafts.

To demonstrate the value of regularization, I simulate a model with two nests of
four products each. To nonparametrically estimate demand for eight products would
require more than 6000 parameters for each demand function, which is much larger than
the sample size and can be quite difficult to handle computationally. To the contrary,
each correctly estimated demand function here (which only depends on four products’
market shares) requires only 81 parameters.11 To see how the proposed procedure
performs, in Table 1 I present the frequency with which each product is selected as
a substitute over 100 simulations. I show these frequencies first using only a single
bootstrapped sample to select the model and then using five samples for this purpose.
Perfect selection in this table would be two 4× 4 matrices of ones stacked diagonally.
Clearly, even a single bootstrap often reduces the dimension of the model significantly.
The model selection procedure correctly identifies that the first four products are in
one group and the latter four are in another. However, many simulations include one
or more irrelevant products (e.g. product 5-8 in σ1). In the bottom half of the table I
increase the number of bootstrap iterations to 5. This drastically reduces the number
of irrelevant products included, while continuing to include all relevant products at a
very high rate.

I show in Figure 1 the resulting estimates of own-price elasticities from this proce-
dure. In black I plot the true own-price elasticities for one of the products along a fixed
grid of prices, and in grey I plot the 90% interval of simulation estimates of own-price
elasticities along that grid. I find that the 90% interval covers the truth, as expected,
and although I do not report the median here it is also close to the truth. Though
this example is simple, what is important to note here is that the procedure to create
this graph requires no customization to deal with potentially far more products, nor in
response to changes to the underlying model of consumer choice (e.g. the distribution
of ε). The relevant substitution patterns and all price elasticities can be calculated
easily and fully nonparametrically using built-in commands in NPDemand.jl.

4.1 Likely Forms of Misspecification

Although the model herein avoids many common distributional assumptions made
in parametric models of demand, there are still many ways in which the model can be
misspecified. In this section we can explore the costs of mis-specifying demand as a
fully nested model, as well as the performance of the method under a more complicated
data-generating process. I now simulate markets of consumers with utility functions

11Both counts of the number of parameters necessary assume that second order Bernstein polyno-
mials are used to approximate each demand function.

15



Table 1: Effect of Increasing Number of Bootstraps on Model Selection

B = 1 1 2 3 4 5 6 7 8

σ1 1.0 0.95 0.99 1.0 0.08 0.04 0.02 0.07
σ2 0.96 1.0 0.99 1.0 0.04 0.06 0.07 0.06
σ3 0.99 0.98 1.0 0.99 0.04 0.02 0.07 0.01
σ4 0.98 0.98 1.0 1.0 0.04 0.04 0.01 0.05
σ5 0.11 0.03 0.05 0.03 1.0 0.97 0.98 0.98
σ6 0.03 0.02 0.06 0.03 0.99 1.0 0.98 0.98
σ7 0.06 0.09 0.03 0.05 0.99 1.0 1.0 0.97
σ8 0.02 0.03 0.06 0.04 0.98 1.0 0.99 1.0
B = 5

σ1 1.0 0.99 0.94 0.94 0.0 0.0 0.01 0.0
σ2 0.97 1.0 0.93 0.97 0.0 0.0 0.0 0.01
σ3 0.98 0.99 1.0 0.95 0.0 0.0 0.0 0.0
σ4 0.98 0.95 0.96 1.0 0.0 0.0 0.0 0.0
σ5 0.0 0.0 0.0 0.01 1.0 0.97 0.99 0.96
σ6 0.0 0.0 0.01 0.0 0.95 1.0 0.95 0.96
σ7 0.0 0.0 0.0 0.0 0.94 0.97 1.0 0.97
σ8 0.0 0.0 0.0 0.0 0.94 0.95 0.92 1.0

Note: Fraction of simulation runs (out of 100) in which the product (columns) were selected into each
product-specific demand function (rows). Shown first using only a single bootstrap sample (top) and
then with five samples (bottom).

of the form:

uijt = θij − αipjt + ξjt + εijt(10)

θij ∼ N(0,
0.5j

J
)

αi ∼ N(−1, 0.4)

Prices (pjt), market-level shocks (ξjt), and instruments for prices continue to be simu-
lated as in the preceding section. We have made the utility function significantly more
complicated now, as it includes product- and consumer-specific match values which are
distributed differently across products as well as heterogenous preferences for prices.
This model could be difficult to estimate even parametrically, as it would involve inte-
grating over J + 1 dimensions of random coefficients. It is also important to note that
the fully nested model is mis-specified now, as θij violates the required index structure
(i.e. because p and ξ have different sets of random coefficients).

The simulations in the preceding section focused on comparing estimated and true
price elasticities evaluated at a fixed grid of prices. Another important measure of the
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Figure 1: Nonparametric Price Elasticities, Truth and 90% Simulation Range
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Note: True own-price elasticities, evaluated on a fixed grid of prices, are in black, and dotted lines
indicate the 90% interval of estimated own-price elasticities on that grid across simulations.

performance of this method is its ability to match the realized price elasticities in the
simulated data. This is the metric on which I focus in this section. For each simulation
sample, I calculate Ê[ε̂jt|εjt], where εjt denotes the true own-price elasticities of the

chosen product, ε̂jt denotes the nonparametric estimate of that elasticity, and Ê[·|·]
denotes the (conditional) expectation, estimated via a simple local regression (i.e. a
kernel smoother).

For my first set of simulations, I generate data for J = 4 products in 2000 markets.
In Figure 2(a) I plot an estimate of Ê[ε̂jt|εjt] for 100 simulated samples in grey, and the
45-degree line in black. The closer the grey lines are to the 45-degree line, the better
the proposed procedure is at matching the price elasticities in the data. Similarly, in
Figure 2(b) I plot kernel density estimates of estimated own-price elasticities (in grey)
and the true density function in black.12 In both figures, the nonparametric procedure
appears to work well. There appears to be a small amount of bias when own-price
elasticities are relatively large, but Figure 2(b) indicates that these represent a small
enough fraction of the data that the estimated distribution of price elasticities closely
approximates the truth. At most other points along the horizontal axis, Ê[ε̂jt|εjt] lies
quite close to the 45-degree line. Together, these figures indicate that violation of
the index assumption appears to have little impact on the accuracy of nonparametric

12I calculate the latter by simulating a single large sample of 20,000 markets and estimating the
density of true own-price elasticities within that sample.
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Figure 2: Simulation Results: 4 Products
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Note: Each figure presents the results of nonparametric demand estimation on 100 simulated samples
of 4 products which are simulated according to Equation 10. Figure (a) plots kernel estimates of

Ê[ε̂jt|εjt] and Figure (b) plots kernel estimates of the probability density function of ε̂jt.

estimates.

For the next set of results, for each simulated sample (of 50 total) I generate
demand for six nests, each containing three products, following the structure above
for 2000 markets. That is, I simulate demand for three products six times and then
pool all products together as if they are sold together as competitors. I then apply
the hierNet model selection procedure using half of the data set with 5 bootstrapped
samples, and then estimate the selected model nonparametrically and calculate price
elasticities using the other half of the data. Results of this exercise are shown in
Figures 3(a) and (b), which are constructed similarly to Figures 2(a) and (b). The
results of this exercise are encouraging. The model selection step, which reduces the
demand estimation problem from one which is infeasibly large (one with 18 products)
to one which is almost trivial to solve, appears to have made little to no difference
on the accuracy of price elasticity estimates on average. It does appear that, relative
to Figures 2(a) and (b), that there is more variation in estimates across simulation
samples. This is to be expected, as the model selection step often does not select
exactly the correct model, meaning that superfluous parameters must be estimated
which thereby decreases the precision of the parameters of interest.

Finally, I simulate demand for 20 products in the form of two nests of 10 products
each. Because the Bernstein polynomials I use to approximate demand would have an
unreasonable number of parameters if 10 products were included, I modify the model
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Figure 3: Simulation Results: 6 Nests of 3 Products Each
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Note: Each figure presents the results of nonparametric demand estimation on 50 simulated samples
of 18 products which are simulated according to Equation 10 in 6 nests, each containing 3 products.
Figure (a) plots kernel estimates of Ê[ε̂jt|εjt] and Figure (b) plots kernel estimates of the probability
density function of ε̂jt.

selection step in order to constrain the maximum size of estimated nests to be small
enough to be quickly estimable. I begin by setting the regularization parameter to a
small value, then run the procedure iteratively, increasing the parameter’s value by a
fixed factor each time. This process is repeated until the number of selected products
is no larger than the specified maximum nest size, which in this case I set to either
four or two. We now face two forms of misspecification: failure of the index restriction
and misspecified nest sizes. The latter may be particularly important in practice, as
researchers are rarely able to know the nesting structure of a set of products ex-ante.
In Figures 4(a)-(d) I show that this form of misspecification also makes little difference
in the accuracy of our estimates. In subfigures (a) and (b), I restrict nests to contain
at most four products, and in subfigures (c) and (d) I reduce the maximum nest size
to two. Neither of these constraints bias estimates of price elasticities significantly. In
fact, because nests of two products require much fewer parameters to estimate, there
appears to be noticeably less variation in estimates in Figure 4(c) than in 4(a), even
though the former is more misspecified than the latter.

4.2 Timing

One important advantage of nonparametric demand estimation relative to para-
metric models is the time required to estimate the model. The workhorse BLP model
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Figure 4: Simulation Results: 2 Nests of 10 Products Each
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Note: Each figure presents the results of nonparametric demand estimation on 50 simulated samples of
20 products which are simulated according to Equation 10 in two nests, each containing 10 products.
Figures (a) and (b) present estimates which constrain nests to contain at most four products, and
Figures (c) and (d) constrain nests to have two products at most. Figures (a) and (c) plots kernel

estimates of Ê[ε̂jt|εjt] and Figures (b) and (d) plots kernel estimates of the probability density function
of ε̂jt.
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is notoriously difficult to implement in practice, and can take many minutes or hours
to estimate once. As researchers may wish to try a number of specifications and/or
instruments for endogenous variables, estimating a BLP-style model of demand can be
very time consuming. This is even true of state-of-the-art software packages designed
to estimate these models, such as pyblp (Conlon and Gortmaker, 2019). In contrast,
nonparametric demand can be done at the relatively low cost of a series of two-stage
least squares regressions. To see the potential benefits on this dimension, in Table 2 I
present the estimated time required for model selection and estimation, varying both
the number of products and the number of markets of available data. I simulate data
in the form of some number of nests N , where demand in each nest is generated ac-
cording to Equation 10. I show estimates of the time required for N varying from 2 to
10 and with sample sizes ranging from 100 to 1000 markets, running the procedure on
10 bootstrapped samples using 5-fold cross validation to select the tuning parameter.
Columns 1 and 2 present the time required for model selection under strong and weak
hierarchy, respectively (only the first three rows of Column 1 are included due to the
length of time required under strong hierarchy). Even when the data contains 1000
markets with 30 products each, model selection under weak hierarchy takes little more
than 10 minutes. Although this is much longer than the times required for fewer prod-
ucts, it is still much quicker than the time necessary for many parametric estimation
procedures. Moreover, because estimation remains extremely quick (Column 3), re-
searchers willing to impose a predetermined substitution matrix can estimate demand
flexibly at extremely small cost.

Table 2: Time Required for Model Selection and Nonparametric Estimation

Selection Time (s) Selection Time (s) Estimation Time (s) N J T
Strong Hier. Weak Hier.

166.62 2.7 < 0.01 2 6 100
253.55 5.57 0.02 2 6 500
366.38 11.86 0.01 2 6 1000

15.85 0.02 5 15 100
45.55 0.02 5 15 500
101.83 0.03 5 15 1000
112.72 0.08 10 30 100
303.86 0.05 10 30 500
771.57 0.07 10 30 1000

Note: Approximate number of seconds required for model selection (with 10 bootstrapped samples
and 5-fold cross validation) under strong and weak hierarchy and nonparametric demand estimation
for varying N , T . N denotes the number of nests, each of which contains three products. T denotes
the number of simulated markets. Times are calculated by taking an average over as many times the
procedure can be run in 30 seconds. For procedures taking longer than 30 seconds for a single run, a
single run-time is reported.
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5 Concluding Remarks

In this paper I address the application of straightforward machine learning meth-
ods to estimate demand nonparametrically in settings with many products. I show that
a simple extension of the standard nested logit model implies that only a small number
of products will substitute for each other. As a result, the inverse demand function of
interest in Compiani (2021) is a function of the market shares and characteristics of only
a small number of products, even when the market includes many options. Though this
model is not appropriate for all settings, it greatly reduces the computational burden of
estimating the market-level demand function nonparametrically when correctly applied
and may be a reasonable approximation even when substantially misspecified. While
treating a market with eight products fully nonparametrically can require estimating
tens of thousands of parameters, estimating fully nested demand in these settings may
require only a few hundred parameters. Because, when the inverse demand function
is unconstrained, estimation amounts to a two-stage least squares problem, these few
hundred parameters can be estimated extremely quickly.

I have shown that selecting the relevant demand model via a high-dimensional
two-stage least squares problem performs well in initial simulations. When products
are grouped such that all characteristics of products in one group are independent of
another, the procedure correctly identifies relevant substitutes at a very high rate. Non-
parametric estimates of price elasticities derived from the selected model closely match
true elasticities on average, even when there are many products and the nonparametric
model is misspecified in multiple ways. Although there are certainly settings in which
the model selection applied here may be misspecified to the point of biasing estimates
of elasticities, the speed with which this approach can be applied is encouraging. The
time costs shown in Table 2, which scale well with larger samples, are small relative
to most workhorse demand models, and the existence of a closed-form solution avoids
many issues with non-convergence in more complicated models. Thus, researchers may
wish to apply this approach as an early step in their project in order to explore poten-
tial substitution patterns in the data (i.e. the substitution patterns estimated by the
model selection step) and/or to test the performance of different instruments quickly.
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A Code Examples

A.1 Minimal Example in Julia

using Statistics, NPDemand

using RCall, DataFrames

@rlibrary ggplot2

J = 2; # number of products

T =2000; # number of markets

beta = -0.4; # price coefficient

sdxi = 0.15; # standard deviation of xi

# Returns market shares, prices, instruments,

# and the market demand shock, respectively

s, p, z = simulate_logit(J, T, beta, sdxi);

df = toDataFrame(s,p,z);

# Estimate demand nonparametrically

inv_sigma, designs = inverse_demand(df);

# Calculate price elasticities at realized prices and market shares

elast, jacobians = price_elasticity(inv_sigma, df, p);

# equation for own-price elasticities in logit model

true_elast = beta.*p.*(1 .- s[:,1])

# Plot kernel densities of estimated and true own-price elasticities

df2 = DataFrame(Estimate = elast, True = true_elast[:,1])

ggplot(df2, aes(x=:True))+

geom_density(aes(x=:Estimate), color = "gray", linetype = "dashed") +

geom_density(aes(x=:True), color = "black") + xlab("Elasticity") +

ylab("Density")
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A.2 Minimal Example in R

Below is an example of how to use JuliaConnectR to call NPDemand.jl from R. In
this example, I assume that a data.frame called r data exists in R containing columns
as required by NPDemand package.

install.packages("JuliaConnectoR")

library("JuliaConnectoR")

juliaEval('using Pkg')

juliaEval('Pkg.add(PackageSpec(url=

"https://github.com/jamesbrandecon/NPDemand.jl"))')

juliaEval('Pkg.add("DataFrames")')

NPDemand <- juliaImport("NPDemand")

juliaEval("using DataFrames")

jl_data <- juliaLet('DataFrames.DataFrame(data);', data = r_data)

results <- NPDemand$inverse_demand(jl_data)
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