
README: Nonparametric Demand Estimation

James Brand∗

April 19, 2020

1 Details

Let me first offer a disclaimer that I am by no means an expert programmer. I have

relied on the Matlab function eval for some parts of the code, which honestly make the code

in the main estimation files somewhat difficult to read. There are surely ways to make this

code more efficient (some of which I am working on). Thankfully, there should be little

to no need for a user to modify these programs, as I have tried to comment the example

file such that all of the features of the code are obvious. My hope is that, for researchers

studying demand in settings with only a few products, these programs lower the cost of

trying nonparametric methods. I have an older version of these files written in R, and I hope

to update and post them soon.

1.1 Implemented Model

The code I have included herein implements the nonparametric demand estimation pro-

cedure introduced by Giovanni Compiani’s job market paper. The package is designed for

estimating demand when both the number of products and the number of product charac-

teristics are small, and many markets with the same choice set are observed. This package

only estimates the version of his model in which price is included in the index. I allow the

option to include another (exogenous) covariate x in the index as well. I also allow other

covariates to be included in the demand function. Giovanni, in his paper, discusses a number

∗University of Texas at Austin. email:: jamesbrand@utexas.edu

1



of constraints on the inverse demand function which can reduce the number of parameters

to be estimated. In this package I have only implemented the constraint that all demand

functions are monotonic in the index.

I specifically choose not to impose other constraints, in particular exchangeability, for

two reasons. First, I find in practice that the best-working order for the sieve corresponding

to each inverse demand function (σ−1
j ) depends on the available variation in the price of good

j. Thus, in practice, researchers may want the order of the sieve to vary for each product.

It is much more difficult to implement exchangeability in this setting, and I have not spent

time on it. Second, some models of interest violate exchangeabiltiy explicitly. The most

obvious example is one in which consumers are imperfectly attentive (see work by Abaluck

and Adams). Still, dropping exchangeability can come at a considerable (efficiency) cost, as

doing so is comparable to reducing the sample size by a factor of J . In cases in which one

is willing to impose this restriction, researchers should use the package released by Giovanni

himself, which is very well written, easy to use, and can be found on his website. He also

includes a version of his code which does not include price in the index, which may also be

of interest to some.

1.2 Files

I use CVX instead of fmincon as the minimizer in estimation. In order to run the

programs herein, you must first install CVX from http://cvxr.com/cvx/doc/install.html. In

this zip file I have included the following files:

• b.m, db.m, bern.m, dbern.m, fullInteraction.m, makeConstraint.m, solve s nested flexible.m,

objective priceIndex.m

• inverse demand.m

• simulate logit.m

• price elasticity priceIndex.m

• example1.m

The first set of programs should essentially be ignored, as they perform background

tasks which construct the Bernstein polynomial sieves and (monotonicity) constraints. The

2



main estimation file is inverse demand.m, which estimates inverse demand functions for

all products. Each σ−1
j is estimated separately. This saves a lot of memory, as estimation

requires constructing and inverting some very large matrices. Doing so separately by demand

function shrinks the size of these matrices and lets us store only one in memory at a time.

This makes a big difference with large datasets or large sieves. One could pool the estimation

into a single step if they wished to impose relationships between parameters of different

inverse demand functions, but without exchangeability this problem can become infeasible

very quickly as the number of products increases.

The program price elasticity priceIndex.m calculates price elasticities using the results

of inverse demand.m. Elasticities can be calculated either at a specified vector of prices

and “deltas” (the inverted index) or at the realized vector of market shares (controlled by

the option trueS ). The program produces three outputs worth discussing here. The first

is the vector of price elasticities requested. The second is a cell matrix, where each row

is a cell containing the estimated Jacobian for the corresponding market. These estimates

can be used to, for example, quickly calculate markups in a Nash-Bertrand or monopoly

pricing model. The third output is the vector of market shares implied by the supplied

prices and deltas when trueS is set to zero. These are the market shares at which elasticities

are calculated.

The file example1.m implements a very simple example to demonstrate the functionality

of the estimation programs. In this file, I simulate an extremely simple demand system using

simulate logit.m, estimate demand, and then calculate elasticities three times. First, I set all

prices except for that of product 1 to its median value. I move the price of product 1 from

the 25th to the 75th percentile of its distribution, and calculate own-price elasticities at each

of these values. Next, I perform the same operation for cross-price elasticities. Finally, using

the option trueS, I instead estimate own-price elasticities for product 1 in each simulated

market. I conduct each of these operations for S simulated samples, and summarize the

results of the first two exercises in figures at the end of the program.

I plan to update this file soon with details for a couple of model selection approaches,

which can in principle allow a researcher to use these methods in markets of more reasonable

size (think 10-20, though larger may be possible in some cases).

3



1.3 Some Comments

In practice, the order of the Bernstein polynomials is a huge degree of freedom for

researchers. Setting the order too high makes estimates unstable, and too low induces signif-

icant biases. This is unavoidable for now, but users should experiment with multiple orders.

I’ll mention that in my simulations, low-order estimates (even when biased) perform better

than parametric estimates which are incorrectly specified. It is also worth emphasizing that

we are targeting the inverse demand function, which we then manipulate to get functionals

of the demand function itself. When the actual demand function is very steep (with respect

to price), the inverse demand function is shallow, and precise estimates require much more

data. In smaller samples this can cause numerical issues, and estimates in these cases are

often unstable. The program price elasticity priceIndex.m will report the number of mar-

kets which create any numerical warnings/errors or NaNs as the number of “bad markets.”

Finally, I’ll note that in general I find that these nonparametric estimates generate long tails

in the distribution of price elasticities (i.e. when trueS is zero). Essentially, at the tails

of the price distribution, price elasticities are often over-estimated because the curvature

of demand (second derivatives) are imprecise at the tails. These estimates are still often

better (on average) than misspecified parametric estimates, but it is good to know this is a

potential concern.

4


	Details
	Implemented Model
	Files
	Some Comments


