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Abstract

This paper revisits the standard production function model and proposes an
alternative identification and estimation procedure. Specifically, I argue that
some of the assumptions of the standard production function model are incon-
sistent with the increasingly popular use of production function methods in the
estimation of markups. I then show that the seminal nonclassical measurement
error result in Hu and Schennach (2008) can be used to nonparametrically iden-
tify the production function under alternative assumptions which do not require
specifying the demand firms face or any knowledge of firms’ input demand func-
tions. I apply the intuition of this result to develop a GMM estimation procedure
for the most practically relevant production function models, and explore the per-
formance of the resulting estimates relative to workhorse methods in simulations.
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1 Introduction

In settings of imperfect competition and differentiated goods, firms’ input deci-
sions are complicated functions of the costs and residual demand curves they face in
equilibrium. Without assuming the structure of demand or competition, the arguments
and functional forms of these input decisions (i.e. input demand functions) are entirely
unknown. Since the seminal work of Olley and Pakes (1996), the literature has focused
on simpler cases in which input demand functions satisfy two convenient criteria: (i)
conditional on fixed inputs (e.g. capital), demand for some variable input is monotonic
in a firm’s unobservable productivity, and (ii) no other unobservables enter the demand
function.1 I call the combination of these two criteria the “scalar unobservable assump-
tion.” In the workhorse production function methods, these assumptions are crucial in
identification and estimation, as they ensure that an unobservable productivity term
can be written as a function of observables (Levinsohn and Petrin, 2003; Ackerberg,
Caves and Frazer, 2015; Gandhi, Navarro and Rivers, 2016).

Relaxing the scalar unobservable assumption is important for two predominant
reasons. First, production data is often lacking on many fronts. The most commonly
used datasets contain no information on the costs the firm faces (e.g. input prices) nor
their competitive environment. The literature has discussed the many issues brought
about by these types of missing data. Second, following De Loecker and Warzynski
(2012) (DLW), some authors have begun to use estimates from the production function
to estimate and discuss nationwide trends in markups and competition. As these ob-
jects are so crucially and endogenously linked to unobservable determinants of costs and
demand, estimates of the production function should be calculated under the weakest
possible assumptions in order to reduce the chance that production function and/or
markup estimates inherit the demand structure implied by the scalar unobservable
assumption.

Recently an interest has grown in methods which address some of these concerns.
Doraszelski and Jaumandreu (2017) and Balat, Brambilla and Sasaki (2016) both main-
tain a monotonicity assumption analogous to (i) but relax (ii) by permitting firms to
have multiple dimensions of productivity (e.g. labor- and capital-augmenting). Re-
latedly, Li and Sasaki (2017) and Ackerberg and Hahn (2015) both develop models
which identify heterogeneous labor and capital productivity indexed by firms’ Hicks-
neutral productivity. In addition, empirical work in these directions has indicated that
labor productivity is quite heterogeneous across firms, meaning that simplistic (e.g.
Cobb-Douglas) production functions are misspecified. Jaumandreu (2018), De Loecker
et al. (2016), and Blum et al. (2018) have instead focused on permitting firm output
to be heterogenous in at least one unobservable dimension, and on allowing these un-
observables to affect input use. Each of these are crucial additions to the literature
which model what may be the most likely deviations from the scalar unobservable

1These assumptions cover simple and intuitive cases, such as (i) perfect competition with homo-
geneous goods and (ii) monopolistic competition in which all firms face the same residual demand.
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assumption.2

In this paper I take an alternative approach. Rather than modeling the way in
which a firm violates the scalar unobservable assumption, I show that the production
function and the distribution of productivity can be identified without any knowledge
of the arguments or functional form of firms’ input demand functions, as long as three
periods of data are available and an independence assumption is satisfied. I present a
proof that the Hu and Schennach (2008) (hereafter HS) nonparametric identification
result, which they apply to a nonclassical measurement error problem, can be applied
to the standard production function model. The key intuition for my approach is that
in the production function, conditional on observables (i.e. inputs), a firm’s output is
an error-ridden signal of its productivity. As this is true in each time period, lagged
output can be used as an instrument to distinguish between current productivity and
measurement error, as long as the former is persistent and the latter is not. This
framing permits the application of the HS identification result directly. I then present
a GMM estimator that makes use of this result. Relative to existing methods, the main
cost of this approach is that it requires that each firm is observed for three periods, and
that any measurement errors in output are fully independent of all inputs. I argue that
these costs are well worth the benefits of dropping the scalar unobservable assumption.

Many other authors have applied measurement error methods to identify panel
models in general and to the production function specifically. Hu and Shum (2012),
Shiu and Hu (2013), and Sasaki (2015) all apply versions of the HS result to prove
nonparametric identification of general dynamic panel models under assumptions dif-
ferent (and sometimes more general) than those used here. This paper is perhaps most
related to Cunha, Heckman and Schennach (2010), Freyberger (2017), and Arellano
and Bonhomme (2016), each of which also apply the HS result to general panel models.
Freyberger (2017) considers a factor model with potentially many fixed unobserved fac-
tors. Cunha, Heckman and Schennach (2010) consider cases in which there are multiple
measurements for each observation in each period, and use these additional measure-
ments to identify unobserved factors in the human capital accumulation processes of
children. Arellano and Bonhomme (2016) prove the identification of a non-separable
panel model with fixed effects and idiosyncratic errors, and estimate that model via
quantile regressions. Though I focus on a simpler subset of models (with additively
separable errors), my work here in some ways modifies the approach in Arellano and
Bonhomme (2016) to permit a persistent time-varying unobservable.

Many papers in the literature have also applied measurement error methods to
the estimation of the production function. Kato and Sasaki (2018) develop uniform
confidence bands for the distribution of productivity under the assumption that pro-

2A recent paper by Demirer (2019) takes another approach, wherein he permits an additional
(labor-augmenting) productivity shock in the production function under the assumption that labor
is static. That paper is complimentary to this one, as I cannot (without additional structure) permit
input-augmenting productivity shocks but also require weaker assumptions on input decisions to
identify the production function.
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ductivity levels are independent of innovations to productivity. il Kim, Petrin and
Song (2016) permit capital to be mismeasured, and use repeated measurments of capi-
tal to identify the production function in this setting.3 Of particular relevance are Hu,
Huang and Sasaki (2017), who estimate a model in which firms’ input usage can be
mismeasured and/or affected by idiosyncratic errors (e.g. exogenous input price vari-
ation). This is one of the only existing papers to permit idiosyncratic unobservables
to enter the input demand function, and although their identification proof follows the
HS result closely, they propose a GMM estimator for their model. I am, to the best
of my knowledge, the first to apply the HS result to identify the production function
without assuming any knowledge of the determinants of firms’ input use.

Beyond the identification result, the contribution of this paper is a simple GMM
estimator for the proposed method which makes use of my identification argument
and which is in some ways an extension of the Blundell and Bond (1998) estimation
approach to cases in which the unobservable evolves nonlinearly. Although the identi-
fication proof motivates an intuitive semi-parametric maximum likelihood estimation
approach, the (density) functions which must be estimated in this approach have many
arguments, so treating them flexibly presents a computational burden. To ameliorate
this issue, I instead propose a GMM estimator in the spirit of Hu, Huang and Sasaki
(2017) which covers most commonly estimated production function models. I show in
Monte Carlo simulations that, unlike traditional estimators of the production function
following the control function approach, the proposed estimator is unaffected by the
addition of unobservables into the input demand function.

Interest in the estimation of the production function has grown in part due to
the work by De Loecker and Warzynski (2012) , who apply the argument from Hall
(1988) to estimate firm-specific markups over marginal cost and have become heav-
ily cited in the literature. The Hall, De Loecker, and Warzynski (HDLW) markup
estimation method requires that the researcher estimate the production function for
each firm and the distribution of an idiosyncratic, unobservable, component of pro-
ductivity. These estimates are then combined and weighted appropriately to recover
markups. This method has been used to study the impact of trade liberalization on
markups (De Loecker et al., 2016), monopsony power in input markets (Morlacco,
2018), and cost efficiencies from mergers (Grieco, Pinkse and Slade, 2018). Most re-
cently De Loecker, Eeckhout and Unger (2018) and De Loecker and Eeckhout (2018)
have applied the HDLW method to the United States and more and 100 countries
worldwide (respectively) to show evidence of a steady and dramatic increase in aver-
age markups.

These papers have sparked a large and growing methodological debate, a significant
subset of which has focused on the appropriate methods for estimating the production
function specifically for use in studies of markups. In three important recent papers,

3Though they do not apply standard measurement error identification results, Collard-Wexler and
De Loecker (2016) also address measurement error in capital via a linear IV approach.
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Jaumandreu (2018), Blum et al. (2018), and Flynn, Gandhi and Traina (2019) argue
that the control function approach as usually implemented cannot identify markups
separately of other model parameters. Jaumandreu (2018) solves this issue by explicitly
modeling the firm’s markup-setting problem, and Flynn, Gandhi and Traina (2019)
argue that knowledge of firms’ returns to scale can alleviate this identification issue.
Each approach is appealing in some cases. With the right data at hand, adding some
structure to demand can control for unobservable demand characteristics that might
otherwise violate the scalar unobservable assumption. For these cases, Jaumandreu
(2018) and Blum et al. (2018) provide two very reasonable approaches.4 Similarly,
many existing estimates of Cobb-Douglas production functions imply constant returns
to scale, so in contexts where the researcher has a strong prior on the returns to scale,
the approach taken by Flynn, Gandhi and Traina (2019) may be sufficient. However, in
many cases we are interested in estimating production functions over many industries
(meaning we may not have a good prior on returns to scale in each) with little to no data
describing the demand for those products. Further, because the industries I study have
many firms, controlling for demand heterogeneity flexibly would require controlling
for many prices in estimation. For these contexts dropping the scalar unobservable
assumption in the way I propose may have some advantages.

2 Standard Approaches

2.1 Workhorse Production Model

In this section I consider a market of single-product firms and model the production
function for firm j in period t of the following form

(1) Yjt = F (Xjt;β)eωjteηjt ,

where Xjt is a vector denoting the capital, labor, and other inputs used to produce
output Yjt.

5 The variable ωjt represents a Hicks-neutral shock to productivity which
is known by the firm in period t but is not observed by the econometrician, and ηjt
is an i.i.d error term representing either an ex-post (i.e. after input choices have been
made) shock to production or measurement error. In the following discussion I will
refer to η as “measurement error” or as an “ex-post shock” interchangeably. The rest
of the paper does not rely on the interpretation of η as measurement error. Following
the literature, the focus of this paper will be the log of equation (1):

(2) yjt = f(xjt;β) + ωjt + ηjt

4Though both sets of authors treat demand very flexibly, both require specifying the determinants
of demand. This is the main drawback of approaches like this, as flexibly specifying demand can
require many arguments, and therefore may require estimating many parameters (Berry and Haile,
2014; Compiani, 2018).

5Under the appropriate assumptions, Yjt can denote firm revenue or units of output.

5



I also assume that ωjt evolves according to a first-order Markov process:

(3) ωjt = g(ωjt−1;ρ) + ξjt

The econometric challenge in estimating equation 2 is that ωjt and ηjt both enter
linearly and vary across firms and time, and that each firm’s input choices will be cor-
related with (or functionally dependent on) the productivity shock ωjt. Thus, standard
regression methods like OLS with fixed effects aimed at recovering unbiased estimates
of the production function parameters β will fail here. Since the seminal work by Olley
and Pakes (1996), researchers have instead relied on inverting one of the firm’s first
order conditions in order to distinguish between the two unobservables. Under stan-
dard assumptions, a short-run profit maximizing firm will choose their flexible input(s)
(sometimes called a “proxy” variable) as a monotonically increasing function of the
productivity shock ωjt.

6 That is, we can often write

(4) vjt = g(xjt, ωjt, cjt),

where vjt is some flexible input used by the firm and cjt is a vector of other observables
affecting the firm’s input decisions. Because this function is monotonic in ωjt, we can
invert it and substitute the inverse into equation (2), yielding

yjt = f(xjt;β) + g−1(xjt, cjt) + ηjt(5)

≡ φ(xjt, cjt) + ηjt(6)

Finally, because ηjt is i.i.d, it is by construction independent of xjtand cjt, we can
identify ηjt as the residual of a nonparametric regression of yjt on (xjt, cjt). With
ηjt then known for all firms, we can calculate yjt − ηjt ≡ f(xjt;β) + ωjt. Under
the assumption that ωjt evolves according to a first-order Markov process and the
availability of instruments for xjt, the residual productivity shock ξjt can be inverted
and β can be estimated by GMM in a second stage.

There are now a series of papers concerning the appropriate variables to include
in the vector c in the first step. Klette and Griliches (1996) and De Loecker (2011)
note that, when firms’ output prices are unobserved (and thus analysis is conducted
using industry-deflated revenues), we need to add market- or firm-level dummies to c
to control for demand shocks. DLW and De Loecker et al. (2016) demonstrate that the
set of variables to be included may be much larger, even when prices are observed. For
instance, DLW include a binary variable for firm export status, which allows exporting
firms to require more inputs at every level of ωjt. De Loecker et al. (2016) go further
and include a vector of market shares and product dummies, motivated as controls for
input price variation which is unobserved in their data.

6Derivation of this can be found in Levinsohn and Petrin (2003) and Ackerberg, Caves and Frazer
(2015).
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As argued by Jaumandreu (2018), the set of variables which should be included
in c often includes variables which are unavailable to the econometrician. Because
researchers studying production functions rarely observe product characteristics, all
differences in demand faced by firms is often unobserved. Any demand asymmetries
may induce firms to choose different amounts of flexible inputs even conditional on
(xjt, cjt, ωjt), thus violating the scalar unobservable assumption. Simple examples of
this include brand prestige effects, which imply that even two firms producing the
same good will face different residual demand curves, and most product characteristics,
which are generally not observed in production data. This makes clear that the scalar
unobservable assumption implicitly makes restrictions on the forms of demand and
competition which can be supported by this model of the production function. Further,
because the appropriate arguments of cjt depend on the nature of demand, it is difficult
to (1) know which cjt should be included and (2) sign the bias induced (on the estimates
of the production function) by including too many or too few variables in cjt.

2.2 Cost Minimization to Recover Markups

There has been a lot of recent interest in the HDLW method of recovering firm-level
markups from production function estimates. In this approach, the key assumption
is that firms are static cost minimizers with respect to at least one perfectly variable
input. Under this condition, firms will optimally set their markups as a function of
the elasticitiy of output with respect to this variable input. To see this, let X and V
denote the fixed a flexible inputs used in production. As shown by DLW, note that a
cost-minimizing firm choosing V to produce at least Ȳjt units of output minimizes

(7) L = P x
jtXjt + P v

jtVjt + λjt(Ȳjt − Yjt(·))

with P x and P v denote the prices of their respective inputs. This problem clearly has
the associated first-order condition for V

(8)
∂Ljt
∂Vjt

= P v
jt − λjt

∂Yjt(·)
∂Vjt

= 0

Now let Pjt denote the price at which output Yjt is sold. Multiplying both sides of

equation 8 by
VjtPjt

YjtPjt
and rearranging terms gives the following equality

(9)
∂Yjt(·)
∂Vjt

Vjt
Yjt

=
Pjt
λjt

P v
jtVjt

PjtYjt

The left side of this equation is the elasticity of output with respect to Vjt. The right
side is composed of two terms. First, note that λjt, the shadow cost of an additional

unit of output, is the marginal cost of output at Ȳjt. Thus, we can define µjt =
Pjt

λjt
as

the markup over marginal cost. The second term,
P v
jtVjt

PjtYjt
, is the cost of materials over
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firm revenue. Letting svjt denote this revenue share of input spending, we can rewrite
equation 9 as

(10) θvjt = µjts
v
jt

where θvjt is the elasticity of output with respect to V , which can be derived from
estimates of the production function. Therefore, once the researcher has estimated the
production function, this necessary condition implies that the entire distribution of
markups is known.

Note, however, that equation 10 includes measured output Yjt in svjt. As has been
noted in papers applying these methods, the first-order condition is, by assumption,
satisfied by the output firms expect to produce, not by the output observed in the
data, as the latter is contaminated with measurement error or production shocks by
assumption. Thus, in practice, estimated markups µ̂jt are constructed as

(11) µ̂jt =
θvjt

svjt/exp(η̂jt)

where η̂jt are estimates of ηjt. There are two important things to say here. First, the
fact that η̂jt enters as an exponential term is not innocuous. By Jensen’s inequality,
E[exp(η̂jt)] > 1. Therefore, although η̂jt is mean zero by construction, exp(η̂jt) will
not be mean 1. Additionally, E[exp(η̂jt)] is increasing in the variance of η̂jt. Thus,
the distribution of the estimates η̂jt will determine not only the variance but also the

mean of markups, even conditional on output elasticity estimates θ̂vjt. Second, some
papers in the literature ignore this correction term, presumably because estimates of
η in financial data tend to be very small. However, evidence in De Loecker, Eeckhout
and Unger (2018) suggests that most of the growth in markups has occurred among the
largest 1-5% of firms. If η̂jt is largest for these firms, then this correction may reduce
average markups substantially. This reveals the second reason that the choice of cjt in
the control function is problematic. If the researcher includes too many variables in c,
she may over fit the data in small samples, thereby artificially reducing the variance of
η̂jt. On the other hand, including too few variables in c may not fully control for ω,
meaning that both η and θv will be misestimated.

In total, this section has shown that the control function approach implicitly makes
assumptions about the nature of the demand and competition firms are facing. This
occurs mostly through the choice of variables to include in the control function, which
are often ad-hoc and rarely relate to an underlying structural model of demand. Thus,
although the scalar unobservable assumption is a convenient assumption when firms
face identical demand curves and the determinants of input usage are known, it is
ill-suited to many other practical cases. When estimating markups, this can cause
two major issues. First, it may bias production function estimates because whatever
assumptions are imposed on input choices or output demand may be misspecified.
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Second, the distribution of measurement error may be estimated with bias as well due
to the fact that likely determinants of input demand (e.g. input prices) are rarely
observed in production data.

3 Identification of a General Panel Model

3.1 Model

The model I consider is of a panel of observations of (Y,X), in which X can be
endogenous and serially correlated over time. Because this paper is motivated by the
study of the production function, I call the cross-sectional unit j a “firm” which uses
observable inputs Xjt to produce output Yjt each year t. Following convention, I use
lowercase letters to denote the log of uppercase variables. Each firm faces a persistent
productivity shock which may be correlated with X, as well as an idiosyncratic shock
which is realized after all input choices are made and independent of all other model
variables. I denote these persistent and idiosyncratic shocks by ω and η, respectively.
I assume that the log production function (indexed by year t but omitting the firm
index j) is of the form

yt = ft(xt) + ωt + ηt(12)

ft(x)
∣∣∣
x=0

= 0(13)

and that at least three periods of data on all firms are available. The form assumed
in equation 12 allows the production function to change arbitrarily over time but not
across firms within year. This is common within the literature, as most studies model
f(·) as a linear (Cobb-Douglas) or interacted quadratic (translog) function. Equation
13 specifies the location of f and can be exchanged for any assumption specifying
the production function at a point. Clearly the mean of ωt and ηt are not separately
identifed in equation 1, so I make the following normalization

Assumption 1. (Normalization) E[ηt|Xt, ωt] = 0

As is standard in the literature, I also assume that ωt evolves according to a
first-order Markov process

ωt = g(ωt−1) + ξt

where the “innovation” to productivity in period t (ξt) is assumed to be mean-independent
of ωt−1 and all values of ω and x before t.

3.2 Identification Intuition

The identification result in this section can be summarized by the following in-
tuition. Start with a simpler model in which ft(x) = 0 for all x, implying that we
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can ignore the production function entirely. Then, suppose the researcher had three
periods of data available for all (i.e. a very large number of) firms:

yjt+1 = ωjt+1 + ηjt+1 ≡ g(ωjt) + ξjt+1 + ηjt+1(14)

yjt = ωjt + ηjt(15)

yjt−1 = ωjt−1 + ηjt−1(16)

There are three components which contribute to the variation in yjt+1 (ωjt, ξjt+1, and
ηjt+1), all of which are unobservable. We are interested in recovering the distribution
of ω and the Markov process g(·). When g(·) is linear, it can be identified by the
regression of yjt+1 on yjt. However, when g(·) is nonlinear, clearly this regression is
misspecified. The problem, generally speaking, is that some of the variation in yjt is
due to η, which serves as a sort of measurement error here. Therefore the covariance
between yt+1 and yt clearly differs from that between ωt+1 and ωt. This introduces an
opportunity to use our third period of data yjt−1. Because we have assumed that ωjt
follows a first-order Markov process, yjt−1 is excluded from the regression of yjt+1 on
yjt conditional on ωjt. Therefore, loosely speaking, we can use yjt−1 as an instrument
for yjt in this regression to identify variation in ωjt. This then identifies g(·) and the
distribution of ξjt+1.

When we add the production function back into the equation, this verbal argument
is more complex. This model permits xt to be correlated with ω. How, then can we
separate ω from x? Begin by noting that I have assumed that ft(0) = 0 for all t.
Thus, the preceding argument demonstrates that we can identify the model at the
point xt−1 = xt = xt+1 = 0. Now, consider a slight perturbation from this point by
making xjt slightly positive while leaving all inputs in other periods at zero. For now,
also suppose that any correlation between ξt and xt does not depend on xt−1. This is
only to simplify the argument. Note that in period t+ 1,

E[yt+1|xt+1 = xt = 0] = E[g(ωt)|xt+1 = xt = 0] + E[ξt+1|xt+1 = xt = 0](17)

→ ∂E[yt+1|xt+1 = xt = 0]

∂xt
=
∂E[g(ωt)|xt+1 = xt = 0]

∂xt
(18)

=

∫
g(ωt)

∂

∂xt
fωt|xt+1=xt=0dωt(19)

and in period t,

E[yt|xt+1, xt] = ft(xt) + E[ωt|xt+1, xt](20)

→ ∂E[yt|xt+1 = xt = 0]

∂xt
=
∂ft(xt)

∂xt

∣∣∣
xt=0

+
∂E[ωt|xt+1 = xt = 0]

∂xt
(21)

=
∂ft(xt)

∂xt

∣∣∣
xt=0

+

∫
ωt

∂

∂xt
fωt|xt+1=xt=0dωt(22)
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Clearly the observable derivative on the left hand side of 19 provides information
regarding the second term in equation 22. As long as the pdf fωt|Xt+1,Xt is such that the
integrals in equations 19 and 22 are one-to-one (once g(·) is known), these equations
imply that ∂

∂xt
ft(xt) is identified at zero. Speaking casually, this offers an iterative

identification argument. The derivative of the production function at zero identifies
the level of ft(·) in a neighborhood of zero, which can then be used to identify the
distribution of ωt in that neighborhood, and so on. Although the proof does not take
this route explicitly, this provides some helpful intuition to understand how ft(·) and ωt
can be separately identified by three periods of data. I show a more concrete example
of this argument in appendix A.1.

To make the point again in words, we are slightly perturbing xt from zero. As we
do this, yjt will move by an amount determined by (i) the derivative of f with respect
to x and (ii) the level of endogeneity. To separate these two components, note that (ii)
will have an observable effect on yjt+1 through g(·). If, conditional on xjt+1, a change
in xt moves yjt+1, this must be through the correlation between xjt and ωjt. Because
we know g(·) from the preceding argument at xt = 0 (when the production function is
irrelevant), we can invert these observed changes in yjt+1 to learn the implied changes
in ωjt. In this way, we can separate (i) from (ii) and determine the derivatives of f
with respect to x.

3.3 Formal Identification

I now offer a formal identification argument by applying a nonparametric instru-
mental variables approach following Hu and Schennach (2008). In order to further
simply the following assumptions and proof, let

Zt ≡ (Xt−1, Xt, Xt+1)

denote a vector of three periods of all observable inputs to production. Note that,
conditional on three periods of inputs Zt, the only variation in firms’ output comes
from the error term ωt + ηt. Thus, conditional on Zt, the identification argument for
the full model is the same as for the simplistic model without a production function,
which is essentially a direct application of the HS result. Next I make the assumptions
which are necessary for the main identification result

Assumption 2. (Exclusion) (i) fyt+1|Zt,yt,ωt,yt−1(yt+1|Zt, yt, ωt, yt−1) = fyt+1|Zt,ωt(yt+1|Zt, ωt)
(ii) fyt|Zt,ωt,yt−1(yt|Zt, ωt, yt−1) = fyt|Zt,ωt(yt|Zt, ωt) for all (yt, ωt, yt−1) ∈ Yt×Ωt×Yt−1,
for all Zt.

Assumption 3. (Distinct Eigenvalues) For all ωt, ω
′
t ∈ Ωt, the set {yt+1 : fyt+1|Zt,ωt(yt+1|Zt, ωt) 6=

fyt+1|Zt,ω′t
(yt+1|Zt, ω′t)} has positive probability whenever ωt 6= ω′t.

Assumption 2, which I call an exclusion restriction, ensures that, conditional on
Zt, (i) yt and yt−1 provide no information regarding yt+1 after conditioning on ωt and
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(ii) yt−1 provides no information which predicts yt after conditioning on ωt. These
can be thought of as distributional versions of standard exclusion restrictions applied
to instrumental variables, and are implied by workhorse production function models
(including the one presented herein) by the first-order Markov assumption as long as η
are independent of ω and X. This IV interpretation is central to both the identification
argument and the GMM estimation procedure I introduce below. Assumption 3 is a
weak assumption which is satisfied if, for example, g(·) is monotonically increasing in
ωt−1, or if the conditional variance of ξt is monotonic in ωt. In the proof, which relies
on a spectral decomposition argument, this assumption is used to ensure uniqueness of
the relevant decomposition. I now define an integral operator Lb|a, which will be relied
on heavily in the proof of the main theorem, and present the final assumption:

Definition. Let a and b denote random variables with supports A and B. Given two
corresponding spaces G(A) and G(B) of functions with domains A and B, respectively,
let Lb|a denote the operator mapping elements of G(A) to G(B) by

[Lb|ag](b) ≡
∫
A
fb|a(b|a)g(a)da,

Assumption 4. (Injectivity) The operators Lyt|Zt,ωt and Lyt−1|Zt,yt are injective (con-
ditional on Zt) over the set of L1 bounded functions in their respective domains for
every Zt

This assumption is standard in the literature following the Hu and Schennach
(2008) result. It is closely related to the bounded completeness assumptions made in
the nonparametric IV literature, and more primitive sufficient conditions for injectivity
of these operators are discussed that literature, as are families of distributions which
satisfy this assumption (Newey and Powell, 2003). Now I claim the following theorem
and remark to summarize my identification results

Theorem 3.1. Under assumptions 1, 2, 3, and 4, the distributions fyt+1|ωt, fyt|ωt,
fωt|yt−1 are identified, as are the corresponding densities conditional on Zt.

Proof. See Appendix A.

Remark. Given Theorem 3.1, the production function ft(X) is also nonparametrically
identified.

This is shown by the following

E[yt|xt, ωt] =

∫
ytfyt|Zt,ωt(·|Zt, ωt)dyt(23)

= ft(xt) + ωt(24)
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where the first line makes explicit that the left hand side is a functional of fyt|Zt,ωt(·|Zt, ωt),
and the second line comes from Assumption 1. Now, we can take derivatives of this
function with respect to the inputs to production:

∂E[yt|xt, ωt]
∂x

=

∫
yjt

∂

∂x
fyt|Zt,ωt(·|Zt, ωt)dyt

=
∂

∂x
ft(xt)

The first equality comes from the definition of the conditional expectation on the left
hand side and by the boundedness of the conditional density of yt. This demonstrates
that all derivatives (iterating appropriately for higher-order derivatives) of ft(X) are
functionals of the density fyt|Zt,ωt(·|Zt, ωt). Thus, we can treat all derivatives of ft(·)
as known. Noting that equation 13 sets the location of ft(·), the additional knowledge
of all derivatives of ft(·) is sufficient for knowledge of ft(·) itself. So, knowledge of
fyt|Zt,ωt(·|Zt, ωt) is sufficient under the assumptions of Theorem 3.1 for knowledge of
ft(·).

Remark. Because we observe yt−1 (and its distribution), Theorem 3.1 implies that we
identify the density fωt .

This arises immediately from the Theorem, because we need only integrate yt−1
(which is observed) out of the identified distribution fωt|yt−1 . To summarize, assump-
tions 1-4 imply that the production function, the distribution of productivity, and the
dependence of inputs on productivity are all identified. The latter comes from the fact
that each distribution in Theorem 3.1 are identified conditional on the vector of inputs
Zt.

I should note here that the HS identification result is far more general than as
applied here. For example, Sasaki (2015), Hu and Shum (2012), and Arellano and
Bonhomme (2016) (and others) all consider applications in which the persistent un-
observable need not be separable. Sasaki (2015) uses arguments related to HS to
demonstrate that, as long as an additional proxy variable is observed (or constructed
from additional periods of data), a dynamic model with nonseparable heterogeneity
and dynamic selection is identified. In this sense, the model here is less general than
may be possible to identify given the assumptions. Said otherwise, perhaps there are
weaker identifying assumptions than those used here which could also identify the pro-
duction function. However, the purpose here is to tailor the identification strategy to
the most general case in order to demonstrate that the scalar unobservable (and other
substitute assumptions) are unnecessary to identify the standard production function.
For this, the HS approach seems well-suited.
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3.4 Identification in the Standard Production Function

3.4.1 Timing of Capital Choices

In many ways the assumptions made to prove Theorem 3.1 are too general to
interpret easily in a production function context. Some of the standard assumptions
of the production function estimation literature are more straightforward, and enforc-
ing them in addition to the preceding identifying assumptions will aid us in choosing
instruments for estimation below. Perhaps most importantly is a timing assumption.
It is notable, and perhaps surprising, that the preceding argument does not rely on a
timing assumption. In principle, each input xt could be correlated with ωt (including
the innovation ξt). Though this flexibility is informative in identifying the production
function, in practice it makes estimation of the model difficult, as there may be little
exogenous variation in xt in each period which can identify the production function pa-
rameters. Separate the input vector x into two components: capital, which is denoted
by k, and all other inputs v which are assumed to be flexible. Following the literature,
I assume that capital kjt is a function of lagged capital and lagged investment, which
implies the following timing assumption

Assumption 5. kt is chosen before ξt+1 is realized.

3.4.2 Flexible Input Elasticity and Prices

To the contrary, I permit all other inputs v to be chosen at period t, meaning that
vt may be correlated with ξt. Much attention has been paid in the literature to the
identification of the elasticity of output with respect to these flexible inputs. Acker-
berg, Caves and Frazer (2015), for example, demonstrate the non-identification of the
output elasticity of labor in the Levinsohn and Petrin (2003) estimation approach in
a value-added model. Gandhi, Navarro and Rivers (2016), on the other hand, address
the identification of the flexible input elasticity in a gross output setting. In each of
these cases, the identification of the flexible input elasticity is complicated by the scalar
unobservable assumption.7 For instance, both sets of authors discuss the possibility
that variation in input prices, observed or not, could ameliorate their respective prob-
lems, and in both papers the authors conclude correctly that any unobserved input
price variation would violate the scalar unobservable assumption.

Since, in the proposed approach, I make no assumptions regarding the role of unob-
servables in input demand functions, unobserved (and persistent) input price variation
could in principle serve to identify the flexible input elasticity. As input prices likely
do vary across firms in practice (e.g. quantity discounts, differing prices from for-
eign/domestic sources), this provides substantial additional identifying variation for

7This is perhaps most clear in Gandhi, Navarro and Rivers (2016), who show that the flexible
input elasticity in gross output production functions is not identified by the standard control function
approach. This is because the scalar unobservable implies that there are no instruments available to
generate variation in this input conditional on productivity and lagged inputs.
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input elasticities. In Appendix D I offer some initial thoughts on identifying the distri-
bution of markups when firms have monopsony power in input markets.8 Most existing
work deriving markups from production function estimates assumes that firms are price
takers in at least one input market.9 I show that this can be relaxed whenever two
flexible inputs are observed (e.g. labor and materials).

3.5 Comparing Assumptions

Because the production function is identified without making a cost-minimization
assumption, one may pause here to wonder whether making such an assumption to
recover markups makes the preceding discussion irrelevant. On that topic I make two
points. First, this cost-minimization first-order condition can hold even when the firm
solves a complex and/or dynamic profit-maximization problem in its other inputs (e.g.
capital, labor). Because the production function also leaves these as possibilities (up
to assumption 5), we have still left much of the input process (including any influence
of demand heterogeneity) free. Second, note that the strength of a cost minimization
assumption depends in part on the types and number of available flexible inputs. It is
particularly strong in settings using financial data, where the meaning and flexibility of
measures of intermediate input spending are unclear. Because we require only that the
firm solves a cost minimization problem for the most flexible input conditional on all
others, additional inputs relax this assumption loosely speaking. Further, additional
flexible inputs may allow us to introduce errors into the cost-minimization process.
Morlacco (2018) takes this approach to study monopsony power in France, and I discuss
some initial thoughts on an extension in Appendix D.

4 Estimation

4.1 Production Function

In this section I build on the foundations laid in Hu, Huang and Sasaki (2017) in
translating the identification argument (also closely related to their argument) into a
simple estimation procedure. To fix ideas, I rewrite the model of interest in terms of
the parameters we wish to estimate (β0, ρ0) and provide an additional assumption

yjt = f(Xjt; β0) + ωjt + ηjt(25)

ωjt = g(ωjt−1; ρ0) + ηjt(26)

Assumption 6. (Independence) (i) ηjt′ ⊥ ωjt, Zjt, ξjt for all t′, t, and (ii) ηjt, ηjt+1,
and ηjt−1 are jointly independent

8The approach therein relies on an application of Kotlarski’s Theorem to recover the markup
distribution. Recently, Kato, Sasaki and Ura (2018) provide uniform confidence bands on the density
of markups derived from this approach.

9In fact, most assume that firms are price takers in all flexible input markets. Morlacco (2018) is
a notable exception.
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Assumption 6 is stronger than the assumptions used for identification, but will
ensure that the moments I construct are valid. It also makes clear one of the costs
of the estimation approach I propose. Whereas the first stage of the control function
approach can be easily adjusted to permit correlation between ηt within firm, over
time, this correlation would invalidate the present estimation procedure. When the
researcher suspects serial correlation in η, an alternative estimation procedure should
be used (e.g. the sieve MLE approach in HS).

In short, the preceding identification argument can be interpreted as demonstrat-
ing that, conditional on three periods of inputs, (ωjt−1 + ηjt−1) can be used as an
instrument in the regression of (ωjt+1 + ηjt+1) on (ωjt + ηjt). Thus, I modify the Hu,
Huang and Sasaki (2017) procedure by replacing the moments they use to identify
input demand functions with moments which instead make use of this instrumental
variables argument.10 The procedure is as follows. For each potential vector of pro-
duction function parameters β (which yield a guess of a production function f̃(·; β)),
we can construct

(27) ỹjt(β) = yjt − f̃(Xjt; β) = (ωjt + ηjt)(β)

where I emphasize that this constructed residual is dependent on β and that it is a
guess of the total residual term (ωjt + ηjt). Next, I assume that the first-order Markov
function g(·; ρ0) is well-approximated by a q−order polynomial with coefficients ρ0.
Note that under this assumption, if there were no measurement error term ηjt (i.e.
ηjt ≡ 0 for all j, t), we could construct the period-t innovation to productivity as

ỹjt(β)−
q∑
p=1

ρpỹ
p
jt−1(β) = ωjt(β)−

q∑
p=1

ρpω
p
jt−1

≡ ξjt+1

I suppress the dependence of ξjt on β, but note that at (β0, ρ0) this is the true pro-
ductivity innovation.11 Unfortunately, the first equality no longer holds when ηjt is
reintroduced. Consider the simple case of q = 2, and define the feasible residual ξ̃ as
follows:

ỹjt+1(β)−
q∑
p=1

ρpỹ
p
jt(β) = ωjt+1 − ρ1ωjt − ρ2ω2

jt + ηjt+1 − ρ1ηjt

− ρ2η2jt − 2ρ2ωjtηjt

= ξjt+1 + ηjt+1 − ρ1ηjt − ρ2η2jt − 2ρ2ωjtηjt ≡ ξ̃jt+1

10Alternatively, researchers interested in estimating the input demand functions HHS identify could
stack their moments with mine.

11This is a special case of the approach considered by Ackerberg and Hahn (2015).
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Note that ηjt, ηjt−1, and ξjt are assumed jointly independent by Assumption 6. In this
case, the faux-innovations ξ̃jt+1 constructed here differ from the true innovation ξjt+1

by an additional error term which is correlated with ỹjt. Thus, even with knowledge of
β0, the regression of ỹjt+1 on its lag will yield biased estimates of ρ. My identification
argument offers the use of ỹjt−1 as an instrument to solve this problem. Because ηt
and ỹt−1 are independent, the vector ρ0 can be identified by the moment condition
E[ξ̃jt+1|ỹjt−1] = 0. To see this note that

cov(ξ̃jt+1, ỹjt−1) = cov(ξ̃jt+1, ωjt−1)

= cov(ξjt+1 + ηjt+1 − ρ1ηjt − ρ2η2jt − 2ρ2ωjtηjt, ωjt−1)

= 0

where cov(η2jt, ωjt−1) = 0 by the full independence of ωjt−1 and ηjt, and cov(ωjtηjt, ωjt−1) =
0 by iterating expectations:

(28) E[ωjtηjtωjt−1] = E[ωjtωjt−1E[ηjt|ωjtωjt−1]] = 0

Similar work follows for the covariance of ξ̃jt+1 and ỹ2jt−1. In order to use these covari-

ance restrictions in estimation, we can translate them into moments relating ξ̃jt+1 to
ỹjt−1. However, the relevant moment E[ξ̃jt+1ỹjt−1] is equal to a non-zero constant (and
similarly for ỹ2jt−1) because although ξ̃jt+1 and ỹjt−1 are uncorrelated, both can have

non-zero mean. So, in an abuse of notation, let us redefine ξ̃jt+1 = ξ̃jt+1 − E[ξ̃jt+1] in
constructing the moments below.12

I now combine these moments with those which are standard in the estimation of
the production function to give the following set of moments (for the quadratic case)

(29) E

 ξ̃jt+1ỹjt−1
ξ̃jt+1ỹ

2
jt−1

ξ̃jt+1Zjt+1

 = 0

where Zjt are standard instruments in production function estimation (e.g. Zjt =
xjt−1), which are valid under the assumption that ξjt+1 is unpredictable in all periods
before t+ 1 and by the full independence of η and Z (Assumption 6).

Before moving on, note that this estimation procedure, while starkly simple to
implement, is novel in the literature. Both ACF and Gandhi, Navarro and Rivers
(2016) mention the linearity of the Markov process required by dynamic panel methods
as one of the main drawbacks of such methods. More recently, papers like Bond
et al. (2020) and Shenoy (2020) have made similar critiques of the scalar unobservable
assumptions as in this paper and have also only considered linear Markov processes
in their discussions of dynamic panel methods. To the contrary, the previous section

12I show that this re-centering generates valid moments in Appendix C.
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demonstrates that the dynamic panel identification argument can be extended to any
first-order Markov process, and this section proves that the quadratic case can be easily
handled in a GMM framework. In Appendix C I show that the same is true for cubic
Markov processes, although a slightly more involved adjustment must be made to the
residual ξ̃, and an additional parameter must be estimated. In practice, most studies of
production functions using standard approaches approximate the Markov process g(·)
with a quadratic or cubic function, meaning these two cases cover the most common
implementations.

4.2 Ex-post Shock

In some cases, in particular when estimating markups using the ratio estimator
as in De Loecker, Eeckhout and Unger (2018), researchers may be interested in the
distribution of the ex-post shock η. In many other cases, one may be interested in the
distribution of productivity ωt and changes in that distribution over time. Taking the
production function estimates from the preceding procedure as given, note that we can
now construct estimates of the sum of ω and η, as ỹjt = ωjt + ηjt = yjt − f(xjt; β). To
estimate the distributions of ω and η separately, we can use the following decomposition
which mirrors the key identifying equation of Theorem 3.1:

(30) fỹjt+1,ỹjt|ỹjt−1
=

∫
fỹt+1|ωt(ỹt+1|ωt)fỹt|ω(ỹt|ωt)fωt|ỹt−1(ωt|ỹt−1)dωt

This equality holds under exactly the same assumptions needed for Theorem 3.1. As
discussed in HS, one could apply this equation to estimation by approximating each
distribution by a sieve and estimating the sieve parameters via maximum likelihood.
As long as a nonparametric approach is taken in this step, the fact that β is estimated
in a prior step is unlikely to substantively affect inference on these distributions.

4.3 Higher Order Markov Processes

Although most empirical applications assume either quadratic or cubic Markov
processes, which can be handled by the moments in Section 4.1 or in Appendix C, and
although the identification result is nonparametric, one may wish to estimate models
with higher order Markov processes. In these cases, there are two reasonable ap-
proaches. As long as sufficiently many reasonable instruments are available, one could
simple extend the algebra in Appendix C to higher order cases. This approach requires
estimating higher-order moments of the measurement error distribution, which may
raise numerical issues and which may be difficult to match to appropriate instruments.
An easier alternative exists in cases in which the parameters of the Markov process
are not of particular interest. In these settings, one can simply include higher orders
of ỹjt−1 as instruments to estimate the higher order terms. Estimates of these terms
will be biased, but (i) the bias is simple to characterize in terms of moments of the
measurement error distribution and (ii) estimates of the production function will be
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unbiased. A proof of this will be included in the next draft. See Hu, Huang and Sasaki
(2017) for details.

5 Simulations
Part of the appeal of the method I propose is that it makes minimal assumptions

regarding the way firms choose the amounts of capital, labor, and materials to use each
year. To test the practical performance of this method, I offer simulation examples in
which I compare the performance of the estimator developed in the preceding section
to the estimation procedure used by DLEU, which applies a procedure like that in
Levinsohn and Petrin (2003). As a simple case to study, I consider a Cobb-Douglas
production (in logs) in three inputs k, l, and m:

(31) yjt = βlljt + βkkjt + βmmjt + ωjt + ηjt

with βl = 0.4, βk = 0.3, and βm = 0.3. Following the traditional production function
literature, k denotes capital, l represents labor, and m is a perfectly flexible material
input. I specify the first-order Markov process for ωjt as a quadratic function in its lag

(32) ωjt = ρ1ωjt−1 + ρ2ω
2
jt−1 + ξjt

with ρ1 = 1, ρ2 = −0.025, and ξjt ∼ N(0, 0.052). I specify reduced-form dynamic
processes for capital and labor demand

kjt = 0.9kjt−1 + E ∗ ωjt−1 + γkjt(33)

ljt = 0.9ljt−1 + E ∗ ωjt−1 + γljt(34)

where γk, γl ∼ N(0, 0.52) are drawn independently and E controls the extent to which
k and l are chosen endogenously. For each simulation sample, I simulate between and
1000 and 4000 firms and compare the method proposed here to the approach taken
in DLEU (closest in spirit to Levinsohn and Petrin (2003)), both estimated via just-
identified two-step GMM. Following the standard in the literature, I simulate firms for
10 periods and use only the final three periods to estimate the model. In the first set of
simulations I specify a reduced-form material input process which satisfies the scalar
unobservable assumption:

(35) mjt = 0.4l2jt + 0.4k2jt + ωjt

This admittedly arbitrary function was chosen because it should be easily approxi-
mated by a polynomial in the first stage control function. In table 1 I present the
means and standard deviations of the estimated production function and Markov pro-
cess coefficients over 1000 simulation samples with E set to 0. Although the variance
of DLEU estimates are smaller in general, I find that the proposed method performs
approximately as well on average as the DLEU procedure in this case, which is en-
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couraging. Next I simulate samples in which DLEU is misspecified by generating an
input demand function which does not satisfy the scalar unobservable assumption. I
violate this assumption in two ways. In the first set of simulations, materials are chosen
according to

(36) m̃jt = mjt + γmjt

where mjt denotes the input demand function in 35, γmjt ∼ N(0, 0.42). In table 2 I
present the results of both estimation procedures on these simulated samples, which
clearly show that the addition of this small error γm produces biases in the DLEU
estimation procedure, even in large samples and in particular with respect to βm. The
size of this bias is larger than 50% of the true parameter value, meaning markups
(which rely directly on βm) would be significantly overestimated in this setting. To the
contrary, the panel estimator remains unbiased for all production function parameters.
Next, I make capital and labor endogenous (by setting E = 0.1 above) to demonstrate
that violations of the scalar unobservable assumption can bias estimates of other pa-
rameters (i.e. βk and βl). I present results from this exercise in table 3. Though control
function estimates of βk and βl are persistently and significantly biased, estimates from
the method introduced here remain unbiased.

Finally, keeping E = 0.1, I violate the scalar unobservable by introducing a more
complicated shock into the input demand function:

(37) m̄jt = 0.4l2jt + 0.4k2jt + ωjtγ̃
m
jt

In this equation, γ̃mjt ∼ N(0, 0.12) interacts with ω, meaning that the deviation from
the scalar unobservable is nonlinear. To the best of my knowledge, no existing studies
of the production function are robust to a data-generating of this form, given that
(i) the scalar unobservable assumption is violated and (ii) this input demand function
need not be optimal (i.e. I make no assumption about the output demand firms face
or the prices they face). I report means and standard deviations of estimates of DLEU
and panel estimates in table 4, which shows that control function estimates of all
parameters are biased.13 This is in stark contrast to panel estimates, which are nearly
unbiased even with a sample of 1000 firms. The simulations in this section, which cover
only a small subset of potential deviations from a scalar unobservable, are suggestive
of the importance of the proposed approach.

6 Concluding Remarks

In this paper I demonstrate that the traditional production function model is
nonparametrically identified without requiring the restrictive scalar unobservable as-
sumption or any knowledge of the demand firms face. The proof I provide is a direct

13The similarity of these estimates to those in the previous table are coincidental.
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application of the result in Hu and Schennach (2008), and is thus closely related to a
number of existing identification results in the literature. Although this nonclassical
measurement error result has been applied many times to date, this is the first paper
to apply it to the production function model in the way shown herein, and is also the
first to use a third period of data to relax the scalar unobservable assumption. I also
provide a GMM estimator for the simplest applications of this argument, which makes
use of standard assumptions about the timing of input choices and is easy to imple-
ment. Monte Carlo simulations indicate that the proposed GMM estimator works well.
Though my estimates have higher variance than those from the control function ap-
proach when the scalar unobservable assumption is satisfied, the former perform much
better than the latter whenever that crucial assumption is violated.

Although this paper is explicitly about estimation of a production function, the
approach taken here is a much more general dynamic panel approach. It is increasingly
common that researchers have panel data available with more than three time periods
for each firm or individual. In many such cases, one may be concerned about persis-
tent unobservables which are correlated with covariates. Examples include studies of
the education production function, in which student ability may be time-varying and
correlated with inputs given to the student, as well as wage studies in which wages
may be correlated with unobserved components of ability.
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Table 1: Panel and DLEU Estimates: Baseline DGP

βk βl βm ρ1 ρ2
Truth: 0.4 0.3 0.3 1 -0.025

DLEU N = 1000 0.4 0.299 0.295
(0.042) (0.043) (0.027)

N = 2000 0.4 0.299 0.296
(0.029) (0.03) (0.024)

N = 4000 0.401 0.3 0.299
(0.021) (0.021) (0.013)

Panel N = 1000 0.402 0.295 0.291 1.001 -0.024
(0.125) (0.126) (0.106) (0.017) (0.006)

N = 2000 0.401 0.299 0.296 1 -0.025
(0.085) (0.084) (0.094) (0.012) (0.004)

N = 4000 0.4 0.3 0.299 1 -0.025
(0.059) (0.057) (0.047) (0.008) (0.003)

Note: Cobb-Douglas production function estimates from DLEU and panel approaches. Data simulated
such that DLEU is correctly specified with reduced-form input choices as described in text. Standard
deviations of estimates reported in parentheses.

Table 2: Panel and DLEU Estimates: Additive Noise

βk βl βm ρ1 ρ2
Truth: 0.4 0.3 0.3 1 -0.025

DLEU N = 1000 0.401 0.302 0.543
(0.048) (0.048) (0.347)

N = 2000 0.403 0.301 0.573
(0.034) (0.035) (0.357)

N = 4000 0.401 0.301 0.593
(0.03) (0.03) (0.366)

Panel N = 1000 0.399 0.305 0.27 1.002 -0.024
(0.145) (0.142) (0.284) (0.02) (0.008)

N = 2000 0.399 0.298 0.285 1.001 -0.025
(0.086) (0.089) (0.187) (0.013) (0.005)

N = 4000 0.403 0.298 0.289 1 -0.025
(0.083) (0.077) (0.175) (0.011) (0.004)

Note: Cobb-Douglas production function estimates from DLEU and panel approaches. Data simulated
with an additive idiosyncratic error in choice of m. Standard deviations of estimates reported in
parentheses.
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Table 3: Panel and DLEU Estimates: Endogenous k, l

βk βl βm ρ1 ρ2
Truth: 0.4 0.3 0.3 1 -0.025

DLEU N = 1000 0.612 0.516 0.523
(0.064) (0.065) (0.155)

N = 2000 0.615 0.515 0.524
(0.045) (0.046) (0.118)

N = 4000 0.613 0.513 0.527
(0.032) (0.032) (0.075)

Panel N = 1000 0.415 0.325 0.291 0.997 -0.025
(0.177) (0.182) (0.174) (0.027) (0.01)

N = 2000 0.408 0.299 0.297 1 -0.025
(0.113) (0.106) (0.088) (0.016) (0.006)

N = 4000 0.4 0.302 0.3 1 -0.025
(0.063) (0.064) (0.057) (0.01) (0.004)

Note: Cobb-Douglas production function estimates from DLEU and panel approaches. Data simulated
with an idiosyncratic error in choice of m and with endogenous k and l. Standard deviations of
estimates reported in parentheses.

Table 4: Panel and DLEU Estimates: Nonseparable Noise

βk βl βm ρ1 ρ2
Truth: 0.4 0.3 0.3 1 -0.025

DLEU N = 1000 0.615 0.514 0.519
(0.067) (0.064) (0.192)

N = 2000 0.614 0.515 0.525
(0.046) (0.046) (0.109)

N = 4000 0.614 0.513 0.527
(0.032) (0.032) (0.075)

Panel N = 1000 0.431 0.324 0.3 0.996 -0.025
(0.247) (0.215) (0.203) (0.029) (0.01)

N = 2000 0.404 0.307 0.299 0.998 -0.025
(0.11) (0.1) (0.087) (0.017) (0.006)

N = 4000 0.401 0.302 0.299 1 -0.025
(0.063) (0.062) (0.056) (0.01) (0.004)

Note: Cobb-Douglas production function estimates from DLEU and panel approaches. Data simulated
with a multiplicative (i.e. nonseparable) idiosyncratic error. Standard deviations of estimates reported
in parentheses.
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Appendices

A Proof of Theorem 3.1
Proof. As Theorem 3.1 and the assumptions which provide it are a special case of HS,
here I reproduce their argument in my particular setting and refer the reader there for
more detail. In order to apply their result as originally stated, we require a known
functional to calculate ω from y conditional on ω and x for every x. As discussed by
Arellano and Bonhomme (2016), this mapping need not be known as long as it is a
known transformation of the data. To generate such a transformation, let us assume
a single dimensional x to ease notation and note that the assumed location of ft(·)
implies that

E[yjt|ωjt, xjt = 0] = ωjt

Thus, at xjt = 0, the conditional expectation above is sufficient. Then note that
changes in xjt conditional on ωjt only move the production function:

∂E[yjt|ωjt, xjt]
∂xjt

=
∂ft(xjt)

∂xjt

this implies that, at each x̃, ωjt,

ωjt ≡ E[yjt|ωjt, x̃]− ft(x̃)

= E[yjt|ωjt, x̃]−
∫ x̃

0

∂E[yjt|ωjt, x]

∂x
dx

This can clearly be calculated iteratively (i.e. increasing x from zero) and for each
dimension of a multivariate x. The rest of the proof follows directly from HS. By the
definition of conditional densities and Assumption 2,

fyt+1,yt|Zt,yt−1 =

∫
fyt+1,yt,ωt|Zt,yt−1(yt+1, yt, ωt|Zt, yt−1)dωt

=

∫
fyt+1|Zt,yt,yt−1,ωt(yt+1|Zt, yt, yt−1, ωt)fyt,ωt|Zt,yt−1(yt, ωt|Zt, yt−1)dωt

=

∫
fyt+1|Zt,ωt(yt+1|Zt, ωt)fyt,ωt|Zt,yt−1(yt, ωt|Zt, yt−1)dωt

=

∫
fyt+1|Zt,ωt(yt+1|Zt, ωt)fyt|Zt,ωt,yt−1(yt|Zt, ωt)fωt|Zt,yt−1(ωt|Zt, yt−1)dωt

=

∫
fyt+1|Zt,ωt(yt+1|Zt, ωt)fyt|Zt,ω(yt|Zt, ωt)fωt|Zt,yt−1(ωt|Zt, yt−1)dωt

This demonstrates that the observed distribution fyt+1,yt|Zt,yt−1 can be decomposed
into the distributions of interest in Theorem 3.1. Though I explicitly condition on Zt in
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the above equations in order to connect the above to Theorem 3.1, the remaining work
for the rest of the proof is unnecessarily burdened by conditioning every distribution
on Zt. To ease this burden, I suppress this conditioning, though the entire argument
should be interpreted as for a fixed Zt. To begin, I rewrite the above decomposition
for a fixed Zt, suppressing that notation, for reference:

(38) fyt+1,yt|yt−1 =

∫
fyt+1|ωt(yt+1|ωt)fyt|ω(yt|ω)fωt|yt−1(ωt|yt−1)dωt

Now, it remains to show that this decomposition is unique. Toward that end, I define
the following two additional operators. Let

Lyt+1;yt|yt−1 ≡
∫
fyt+1yt|yt−1(yt+1yt|yt−1)g(yt−1)dyt−1

∆yt+1|ωtg ≡ fyt+1|ωt(yt+1|·)g(·)

where Lyt+1;yt|yt−1 maps functions of yt−1 to functions of yt, and ∆yt+1|ωt maps functions
of ω to functions of ω. Now, we can rewrite Lyt+1;yt|yt−1 in terms of ∆yt+1|ωt and the
operators from Assumption 4:[

Lyt+1;yt|yt−1g
]

(yt) =

∫
fyt+1yt|yt−1(yt+1; yt|yt−1)g(yt−1)dyt−1

=

∫ ∫
fyt+1;yt,ωt|yt−1(yt+1yt, ωt|yt−1)dωtg(yt−1)dyt−1

=

∫ ∫
fyt|ωt(yt|ωt)fyt+1|ωtfωt|yt−1(ωt|yt−1)g(yt−1)dyt−1dωt

=

∫
fyt|ωt(yt|ωt)fyt+1|ωt

∫
fωt|yt−1(ωt|yt−1)g(yt−1)dyt−1dωt

=

∫
fyt|ωt(yt|ωt)fyt+1|ωt

[
Lωt|yt−1

]
(ωt)dωt

=

∫
fyt|ωt(yt|ωt)

[
∆yt+1|ωtLωt|yt−1g

]
(ωt)dωt

=
[
Lyt|ωt∆yt+1|ωtLωt|yt−1g

]
(yt)

This gives us the equivalence of the operators:

(39) Lyt+1;yt|yt−1 = Lyt|ωt∆yt+1;ωtLωt|yt−1

integrating over yt+1 on both sides of this equation gives

Lyt|yt−1 = Lyt|ωtLωt|yt−1
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Next, we can invert Lyt|ωt to give us

Lωt|yt−1 = L−1yt|ωt
Lyt|yt−1

The existence of this inverse is assumed directly in Assumption 4. Substituting
this into equation 39,

Lyt+1;yt|yt−1 = Lyt|ωt∆yt+1;ωtL
−1
yt|ωt

Lyt|yt−1

Finally, applying L−1yt|yt−1
from the right on both sides of the equation yields

Lyt+1;yt|yt−1L
−1
yt|yt−1

= Lyt|ωt∆yt+1;ωtL
−1
yt|ωt

This inverse operator exists by Assumption 4, as shown in Lemma 1 in HS. As
is standard in the proofs in this literature, I note that the right hand side of this
equation is in the form of an eigenvalue-eigenfunction decomposition with eigenvalues
corresponding to fyt+1|ωt and eigenfunctions corresponding to fyt|ωt . Following the
argument made in HS, Assumptions 1 and 3 ensure that this decomposition is unique,
which concludes the outline of the proof. See HS for a detailed discussion of the spectral
decomposition argument.

A.1 Identifying Endogeneity

In section 3.2 I offer some intuition for how observing a future period of data can
aid the identification of the production function. In particular, I argue that knowledge
of the Markov process g(ω) permits inverting the derivative of yt+1 with respect to
xt to determine the correlation between ωt and xt. Knowledge of this correlation is
clearly essential for identifying the production function (to un-do the omitted variable
bias induced by the unobservable ω). Here I demonstrate this argument more formally
for a simplified class of distributions of productivity. Suppose the researcher knew that
ω was distributed (conditional on x) Uniform[0, A− x] for an unknown scalar A > 0.
Clearly this class of distributions permits endogeneity of x, as it implies that ω will be
increasing (on average) in x. Recall equation 19:

→ ∂E[yt+1|xt+1 = xt = 0]

∂xt
=

∫
g(ωt)

∂

∂xt
fωt|xt+1=xt=0dωt
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With the assumed class of conditional productivity distributions, we can substitute for
fωt|xt+1=xt=0

→ ∂E[yt+1|xt+1 = xt = 0]

∂xt
=

∫
g(ωt)

∂

∂xt

1

A− xt

∣∣∣
xt=0

dωt(40)

=
−1

A2

∫
g(ωt)dωt(41)

Because g(·) is known (from the argument made in the text at x = 0) and the left side
of the equation is observable, this implies that A (and the conditional distribution of
ωt at every xt) is known. Now recall equation 22:

→ ∂E[yt|xt+1 = xt = 0]

∂xt
=
∂ft(xt)

∂xt

∣∣∣
xt=0

+

∫
ωt

∂

∂xt
fωt|xt+1=xt=0dωt

Given knowledge of fωt|xt , the second term on the right side of the equation is now
known, meaning that the difference between the (observable) left hand side and this
known term identifies the derivative of ft at xt = 0. If ft is Cobb-Douglas, this iden-
tifies the entire production function. When ft is analytic, identifying all higher order
derivatives by repeatedly differentiating equation 22 also identifies the entire production
function. Though this is a trivially simple example, it demonstrates the importance of
being able to identify the Markov process at Zt = 0 and of the assumptions concerning
the invertibility of integral operators (which are much more general than the class of
uniform distributions here).

B Estimation Details

B.1 Control Function

In producing production function estimates via the control function approach, I
estimate industry-specific, time-invariant, translog production functions in two steps.
First, I estimate the control function as a quadratic function in k and v (little changes
upon the addition of year fixed effects). After subtracting estimated ex-post shocks
from output, I estimate the production function via two-step GMM. In each step,
I begin the Nelder-Mead search from more than 100 different starting positions and
choose among the resulting estimates those which produce the smallest objective value
subject to the constraint that the linear terms are between zero and 1. The instruments
I use are kt−1 and vt−1, the interaction between the two, and a quadratic term for each.

B.2 Panel

For the panel GMM estimator I again use two-step efficient GMM to estimate an
industry-specific, time-invariant, translog production function. I begin the optimiza-
tion at many initial points and use the same criteria to choose the best estimates as I
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do in the control function approach. I find that the some industries are well-identified
with a just-identified system, while others require additional instruments. To avoid
making somewhat arbitrary instrument inclusion decisions industry-by-industry, I be-
gin by estimating the production function for each industry with instruments kt, vt,
their interaction, and quadratic terms in each, as well as linear terms in kt−1 and vt−1.
I use the residual ωt−1 + ηt−1 implied by the production function parameters (at each
objective function evaluation) as instruments for the Markov process, as described in
the text. Note that in the panel estimator I use three periods of data to identify the
production function at t: t, t − 1, and t + 1. Thus, kt and vt are still lags of inputs
relative to the productivity innovation used in estimation (ξt+1). Next, I test for over
identification in each industry. For any industry for which I can reject the null, I re-
estimate the production function, this time dropping kt−1 and vt−1 (thus making the
system just-identified).

C Validity of GMM Approach

C.1 Quadratic Case

In this section I show explicitly that the moments I construct in the quadratic case
are valid. I assume that the first-order Markov process for productivity is quadratic,
i.e. that

(42) ωjt = ρ1ωjt−1 + ρ2ω
2
jt−1 + ξjt

for each firm j and year t. Under this assumption, my (just-identified) estimation
procedure is as follows:

1. Guess β

2. Construct ỹjt = yjt − f(kjt, vjt, β) for all t

3. Construct residual ξ̃jt = ỹjt − ρ1ỹjt−1 − ρ2y2jt−1 for all t

4. Center ξ̃jt+1 = ξ̃jt+1 − E[ξ̃jt+1]

5. Interact ξ̃jt+1 with kjt, vjt−1, ỹjt−1, and ỹ2jt−1 to construct four moments

6. Loop over 1-4 to minimize moments

Note that in this model,

ξ̃jt+1 = ξjt+1 + ηjt+1 − ρ1ηjt − 2ρ2ωjtηjt − ρ2η2jt
E[ξ̃jt+1] = −ρ2E[η2jt]
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By the full independence of ηjt with inputs, this means that ξ̃jt+1 is mean-independent
of my instruments. I now show this more explicitly. Note that at the true β = β0

E[ξ̃jt+1ỹj−1] = E[ξ̃jt+1(ωjt−1 + ηjt−1)]

= E[ξ̃jt+1ωjt−1]

= E[(ξjt+1 + ηjt+1 − ρ1ηt)ωjt−1]− E[2ρ2ωjtηjtωjt−1]− E[ρ2η
2
jtωjt−1](43)

where the second line comes from the fact that ηjt−1 is mean independent of ξjt+1,
and the third comes from substitution of the definition of ξ̃jt+1. Taking each term of
equation 43 separately, note first that the first term is zero because each term in the
parenthesis are mean zero and mean independent of ωjt−1. This follows because, for
any ε meeting both of these criteria,

E[εωjt−1] = E[E[εωjt−1|ωjt−1]]
= E[ωjt−1E[ε|ωjt−1]]
= E[ωjt−1]E[ε]

= 0

by the Tower property. Note that iterating expectations also eliminates the second
term of equation 43:

E[ρ2ωjtηjtωjt−1] = E[ρ2E[ωjtηjtωjt−1|ωjt−1, ωjt]]
= ρ2E[ωjtωjt−1E[ηjt|ωjt, ωjt−1]]
= ρ2E[ωjtωjt−1]E[ηjt|ωjtωjt−1]
= 0

Finally, consider the third term of equation 43. Applying the law of iterated expecta-
tions once more gives:

E[ρ2η
2
jtωjt−1] = ρ2E[η2jt]E[ωjt−1]

These three terms, combined with the unconditional mean E[ξ̃jt+1] shown above, imply
that

(44) E[ξ̃jt+1ỹjt−1] = −E[η2jt]E[ωjt−1] = E[ξ̃jt+1]E[ỹjt−1]

This implies that cov(ξ̃jt+1, ỹjt−1) = 0. Thus, after demeaning ξ̃jt+1, E[ξ̃jt+1ỹjt−1] = 0.
Nearly identical work demonstrates that kjt and vjt−1 are valid instruments. Longer,
but identical in spirit, work shows the same for ỹ2jt−1.
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C.2 Cubic Case

In this section I discuss the modification necessary for the estimation of a model
with a cubic first-order Markov process, i.e. when productivity evolves according to

(45) ωjt = ρ1ωjt−1 + ρ2ω
2
jt−1 + ρ3ω

3
jt−1 + ξjt

In this case, the feasible residual ξ̃jt+1 is now

(46) ξ̃jt+1 = ξjt+1 + ηjt+1 − ρ1ηjt − ρ2η2jt − ρ3η3jt − 2ρ2ωjtηjt − 3ρ3ω
2
jtηjt − 3ρ3ωjtη

2
jt

Note that the mean of this residual is now

(47) E[ξ̃j+1] = −ρ2E[η2jt]− ρ3E[η3jt]− 3ρ3E[η2jt]E[ωjt]

which clearly implies that ξ̃jt is no longer mean independent of ỹjt−1 (because ỹjt−1 is
correlated with ωjt).

E[ξ̃jt+1|ỹjt−1] = −ρ2E[η2jt|ỹjt−1]− ρ3E[η3jt|ỹjt−1]− 3ρ3E[η2jt|ỹjt−1]E[ωjt|ỹjt−1]

What is required in this case is an additional adjustment to ξ̃jt+1, and the estimation
of an additional moment. Note that the mean-independence of ξ̃jt+1 is violated by
the third term. Thus, the appropriate adjustment to ξ̃jt+1 is one which eliminates the
influence of this term on the objective function. One option to do this is to estimate
that term. Let us redefine

(48) ξ̃jt+1 ≡ ωjt+1 −
3∑
p=1

ρpω
p
jt + 3ρ3ỹjtσηt

where σηt denotes the variance of measurement error in period t. Because σηt ≡ E[η2jt]
and E[ỹjt] = E[ωjt],

E[ωjtηjt − ỹjtσηt ] = 0

This also holds when ξ̃jt+1 is interacted with instruments. Now, clearly, this approach
relies on researcher knowledge, or joint estimation, of σηt . For the latter approach, kjt+1

and/or k2jt+1 can be used as instruments for ση. These are valid instruments because
(i) kjt+1 is independent of ξjt+1 and all measurement errors by assumption (because it
is determined in the previous period) and (ii) at any σ̂ηt 6= σηt , some variation in ωjt
will persist in ξ̃jt+1, meaning ξ̃jt+1 and kjt+1 will be correlated (through the correlation
between investment and productivity).

D Some Thoughts on Markups in Monopsonies
In this appendix I consider the estimation of the distribution of markups (i) with-

out assuming the scalar unobservable assumption, as in the main text and (ii) under the
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additional presence of monopsony power in setting prices. Substituting the standard
corrected markup into the first order condition and taking logs of both sides yields

(49) log(θmjt )− log(smjt) = log(µjt) + ηjt

Note now that the left side is observed, but both terms to the right of the equality
are unobserved. Further, ηjt and µjt vary at the same (firm-year) level, meaning there
is no way to separate them without further assumptions. Equation 49 is only valid
if firms have no monopsony power in the market for m. In many markets, this is an
unrealistic assumption. Instead suppose that firms have some monopsony power in all
input markets, meaning the first order condition is now

(50) µjt ∗ φjt =
θmjt

smjtexp(ηjt)

where φjt is a function of the (input) supply function faced by the firm and represents
a wedge relative to the competitive input market case. Suppose that the researcher
observed multiple variable inputs, which is often the case in practice. The standard
approach has been to choose, loosely speaking, the “most variable” input and use the
markups implied by the output elasticity θ for that input. One alternative approach
is to think of φjt as an error in our estimates of the markup distribution and apply
Kotlasrki’s Theorem to remove it. Denoting the two flexible inputs as m and x, 50 (in
logs) becomes

log

(
θmjt
smjt

)
= log(µjt) + ηjt + log(φmjt)

log

(
θxjt
sxjt

)
= log(µjt) + ηjt + log(φxjt)

Now, we have two equations which both contain log(µjt)+ηjt plus an additive error. In
order to estimate the distributions of φmjt and φxjt, I propose following a recent paper by
Kato, Sasaki and Ura (2018), who demonstrate under general assumptions how to esti-
mate and conduct inference on the distribution of log(µ)+η. I refer the reader to their
paper for econometric assumptions, but it may be informative to discuss the assump-
tions we must make concerning the relationship between the various unobservables on
the right hand side (Assumption 1 in Kato, Sasaki and Ura (2018)):

Assumption 7. (i) µ, η, φm, and φx are continuously distributed with finite first
moments and either log(φm) or log(φx) has mean zero.

(ii) µ, η, φm, and φx are mutually independent.

These assumptions are clearly weaker than standard approaches, which require
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that φm = φx = 1, meaning that log(φm) = log(φx) = 0 identically. The requirement
that µ and the wedges φx and φm are mutually independent may seem restrictive, as (i)
firms with monopsony power in one market may have it in another, and (ii) large firms
may have large markups and more monopsony power, but again these assumptions
are weaker than those made in most applications. The drawback of relaxing these
assumptions is that the distribution which is identified is that of log(µ) + η, not log(µ)
alone. The extent of this drawback depends on the setting. As I discuss in the main
text, it is unclear what prior we should have on the extent of measurement error in
commonly used datasets. In settings where η is believed to be negligible or non-existent
(i.e. Ackerberg and Hahn (2015)), the identified distribution is simple log(µ). In other
cases, where measurement error cannot be ignored, deriving the distribution of markups
is less clear. I argue in the main text that the distribution of η alone is identified. With
this distribution and that of log(µ) + η known, perhaps an additional deconvolution
could identify fµ alone.
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